Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 11(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861286

RESUMO

The aims of this study were to evaluate the physicochemical and mechanical properties, antimicrobial (AM) functionality, and cytotoxic potential of novel dental polymers containing quaternary ammonium and trimethoxysilyl functionalities (e.g., N-(2-(methacryloyloxy)ethyl)-N,N-dimethyl-3-(trimethoxysilyl)propan-1-aminium iodide (AMsil1) and N-(2-(methacryloyloxy)ethyl)-N,N-dimethyl-11-(trimethoxysilyl)undecan-1-aminium bromide (AMsil2)). AMsil1 or AMsil2 were incorporated into light-cured (camphorquinone + ethyl-4-N,N-dimethylamino benzoate) urethane dimethacrylate (UDMA)/polyethylene glycol-extended UDMA/ethyl 2-(hydroxymethyl)acrylate (EHMA) resins (hereafter, UPE resin) at 10 or 20 mass %. Cytotoxic potential was assessed by measuring viability and metabolic activity of immortalized mouse connective tissue and human gingival fibroblasts in direct contact with monomers. AMsil-UPE resins were evaluated for wettability by contact angle measurements and degree of vinyl conversion (DVC) by near infra-red spectroscopy analyses. Mechanical property evaluations entailed flexural strength (FS) and elastic modulus (E) testing of copolymer specimens. The AM properties were assessed using Streptococcus mutans (planktonic and biofilm forms) and Porphyromonas gingivalis biofilm. Neither AMsil exhibited significant toxicity in direct contact with cells at biologically relevant concentrations. Addition of AMsils made the UPE resin more hydrophilic. DVC values for the AMsil-UPE copolymers were 2%-31% lower than that attained in the UPE resin control. The mechanical properties (FS and E) of AMsil-UPE specimens were reduced (11%-57%) compared to the control. Compared to UPE resin, AMsil1-UPE and AMsil2-UPE (10% mass) copolymers reduced S. mutans biofilm 4.7- and 1.7-fold, respectively (p ≤ 0.005). Although not statistically different, P. gingivalis biofilm biomass on AMsil1-UPE and AM AMsil2-UPE copolymer disks were lower (71% and 85%, respectively) than that observed with a commercial AM dental material. In conclusion, the AM function of new monomers is not inundated by their toxicity towards cells. Despite the reduction in mechanical properties of the AMsil-UPE copolymers, AMsil2 is a good candidate for incorporation into multifunctional composites due to the favorable overall hydrophilicity of the resins and the satisfactory DVC values attained upon light polymerization of AMsil-containing UDMA/PEG-U/EHMA copolymers.

2.
J Funct Biomater ; 9(1)2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29495522

RESUMO

A trend for the next generation of polymeric dental restoratives is to incorporate multifunctional capabilities to regulate microbial growth and remineralize tooth surfaces. Polymerizable 2-(methacryloyloxy)-N-(2-(methacryloyloxy)ethyl)-N,N-dimethylethan-1-aminium bromide (IDMA1) and N,N'-([1,1'-biphenyl]-2,2'-diylbis(methylene))bis(2-(methacryloyloxy)-N,N-dimethylethan-1-aminium) bromide (IDMA2), intended for utilization in bi-functional antimicrobial and remineralizing composites, were synthesized, purified with an ethanol-diethyl ether-hexane solvent system, and validated by nuclear magnetic resonance (¹H and 13C NMR) spectroscopy, mass spectrometry, and Fourier-transform infrared spectroscopy. When incorporated into light-curable urethane dimethacrylate (UDMA)/polyethylene glycol-extended UDMA (PEG-U)/ethyl 2-(hydroxymethyl)acrylate (EHMA) (assigned UPE) resins, IDMAs did not affect the overall resins' hydrophilicity/hydrophobicity balance (water contact angle: 60.8-65.5°). The attained degrees of vinyl conversion (DVC) were consistently higher in both IDMA-containing copolymers and their amorphous calcium phosphate (ACP) composites (up to 5% and 20%, respectively) reaching 92.5% in IDMA2 formulations. Notably, these high DVCs values were attained without an excessive increase in polymerization stress. The observed reduction in biaxial flexure strength of UPE-IDMA ACP composites should not prevent further evaluation of these materials as multifunctional Class V restoratives. In direct contact with human gingival fibroblasts, at biologically relevant concentrations, IDMAs did not adversely affect cell viability or their metabolic activity. Ion release from the composites was indicative of their strong remineralization potential. The above, early-phase biocompatibility and physicochemical tests justify further evaluation of these experimental materials to identify formulation(s) suitable for clinical testing. Successful completion is expected to yield a new class of restoratives with well-controlled bio-function, which will physicochemically, mechanically, and biologically outperform the conventional Class V restoratives.

3.
Dent Mater ; 30(12): 1316-24, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25443160

RESUMO

OBJECTIVES: Photopolymerized composites are used in a broad range of applications with their performance largely directed by reaction kinetics and contraction accompanying polymerization. The present study was to demonstrate an instrument capable of simultaneously collecting multiple kinetics parameters for a wide range of photopolymerizable systems: degree of conversion (DC), reaction exotherm, and polymerization stress (PS). METHODS: Our system consisted of a cantilever beam-based instrument (tensometer) that has been optimized to capture a large range of stress generated by lightly-filled to highly-filled composites. The sample configuration allows the tensometer to be coupled to a fast near infrared (NIR) spectrometer collecting spectra in transmission mode. RESULTS: Using our instrument design, simultaneous measurements of PS and DC are performed, for the first time, on a commercial composite with ≈80% (by mass) silica particle fillers. The in situ NIR spectrometer collects more than 10 spectra per second, allowing for thorough characterization of reaction kinetics. With increased instrument sensitivity coupled with the ability to collect real time reaction kinetics information, we show that the external constraint imposed by the cantilever beam during polymerization could affect the rate of cure and final degree of polymerization. SIGNIFICANCE: The present simultaneous measurement technique is expected to provide new insights into kinetics and property relationships for photopolymerized composites with high filler content such as dental restorative composites.


Assuntos
Resinas Compostas/química , Materiais Dentários/química , Cura Luminosa de Adesivos Dentários , Silicatos de Alumínio/química , Silicatos de Alumínio/efeitos da radiação , Resinas Compostas/efeitos da radiação , Materiais Dentários/efeitos da radiação , Desenho de Equipamento , Vidro/química , Vidro/efeitos da radiação , Cinética , Teste de Materiais/instrumentação , Polimerização , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Estresse Mecânico , Temperatura , Termômetros
4.
Dent Mater ; 30(10): 1113-25, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25082155

RESUMO

OBJECTIVE: To investigate the complex structural and dynamical conversion process of the amorphous-calcium-phosphate (ACP)-to-apatite transition in ACP based dental composite materials. METHODS: Composite disks were prepared using zirconia hybridized ACP fillers (0.4 mass fraction) and photo-activated Bis-GMA/TEGDMA resin (0.6 mass fraction). We performed an investigation of the solution-mediated ACP-to-apatite conversion mechanism in controlled acidic aqueous environment with in situ ultra-small angle X-ray scattering based coherent X-ray photon correlation spectroscopy and ex situ X-ray diffraction, as well as other complementary techniques. RESULTS: We established that the ACP-to-apatite conversion in ACP composites is a two-step process, owing to the sensitivity to local structural changes provided by coherent X-rays. Initially, ACP undergoes a local microstructural rearrangement without losing its amorphous character. We established the catalytic role of the acid and found the time scale of this rearrangement strongly depends on the pH of the solution, which agrees with previous findings about ACP without the polymer matrix being present. In the second step, ACP is converted to an apatitic form with the crystallinity of the formed crystallites being poor. Separately, we also confirmed that in the regular Zr-modified ACP the rate of ACP conversion to hydroxyapatite is slowed significantly compared to unmodified ACP, which is beneficial for targeted slow release of functional calcium and phosphate ions from dental composite materials. SIGNIFICANCE: For the first time, we were able to follow the complete solution-mediated transition process from ACP to apatite in this class of dental composites in a controlled aqueous environment. A two-step process, suggested previously, was conclusively identified.


Assuntos
Ácidos/química , Fosfatos de Cálcio/química , Resinas Compostas , Estrutura Molecular , Difração de Pó
5.
Anat Rec (Hoboken) ; 297(4): 599-617, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24639076

RESUMO

The erupted tusk of the narwhal exhibits sensory ability. The hypothesized sensory pathway begins with ocean water entering through cementum channels to a network of patent dentinal tubules extending from the dentinocementum junction to the inner pulpal wall. Circumpulpal sensory structures then signal pulpal nerves terminating near the base of the tusk. The maxillary division of the fifth cranial nerve then transmits this sensory information to the brain. This sensory pathway was first described in published results of patent dentinal tubules, and evidence from dissection of tusk nerve connection via the maxillary division of the fifth cranial nerve to the brain. New evidence presented here indicates that the patent dentinal tubules communicate with open channels through a porous cementum from the ocean environment. The ability of pulpal tissue to react to external stimuli is supported by immunohistochemical detection of neuronal markers in the pulp and gene expression of pulpal sensory nerve tissue. Final confirmation of sensory ability is demonstrated by significant changes in heart rate when alternating solutions of high-salt and fresh water are exposed to the external tusk surface. Additional supporting information for function includes new observations of dentinal tubule networks evident in unerupted tusks, female erupted tusks, and vestigial teeth. New findings of sexual foraging divergence documented by stable isotope and fatty acid results add to the discussion of the functional significance of the narwhal tusk. The combined evidence suggests multiple tusk functions may have driven the tooth organ system's evolutionary development and persistence.


Assuntos
Polpa Dentária/fisiologia , Sensação/fisiologia , Dente/fisiologia , Animais , Polpa Dentária/inervação , Dieta , Feminino , Expressão Gênica , Microscopia Eletrônica de Varredura , Neurofisiologia , Dente/anatomia & histologia , Baleias
6.
J Biomed Mater Res B Appl Biomater ; 100(5): 1264-73, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22514160

RESUMO

Half of all dental restorations fail within 10 years, with secondary caries and restoration fracture being the main reasons. Calcium phosphate (CaP) composites can release Ca and PO(4) ions and remineralize tooth lesions. However, there has been no report on their long-term mechanical durability. The objective of this study was to investigate the wear, thermal-cycling, and water-aging of composites containing amorphous calcium phosphate nanoparticles (NACP). NACP of 112-nm and glass particles were used to fabricate four composites: (1) 0% NACP+75% glass; (2) 10% NACP+65% glass; (3) 15% NACP+60% glass; and (4) 20% NACP+50% glass. Flexural strength and elastic modulus of NACP nanocomposites were not degraded by thermal-cycling. Wear depth increased with increasing NACP filler level. Wear depths of NACP nanocomposites after 4 × 10(5) cycles were within the range for commercial controls. Mechanical properties of all the tested materials decreased with water-aging time. After 2 years, the strengths of NACP nanocomposites were moderately higher than the control composite, and much higher than the resin-modified glass ionomers. The mechanism of strength loss for resin-modified glass ionomer was identified as microcracking and air-bubbles. NACP nanocomposites and control composite were generally free of microcracks and air-bubbles. In conclusion, combining NACP nanoparticles with reinforcement glass particles resulted in novel nanocomposites with long-term mechanical properties higher than those of commercial controls, and wear within the range of commercial controls. These strong long-term properties, plus the Ca-PO(4) ion release and acid-neutralization capability reported earlier, suggest that the new NACP nanocomposites may be promising for stress-bearing and caries-inhibiting restorations.


Assuntos
Resinas Acrílicas/química , Fosfatos de Cálcio/química , Cimentos de Ionômeros de Vidro/química , Teste de Materiais , Nanocompostos/química , Nanopartículas/química , Dióxido de Silício/química , Fatores de Tempo
7.
Dent Mater ; 27(9): 899-905, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21714998

RESUMO

OBJECTIVE: This investigation was to generate (1) guidelines for designing a tensometer that satisfies the necessary accuracy and sensitivity requirements for measuring polymerization stress (PS), and (2) a formula for calculating PS. Polymerization stress remains one of the most critical properties of polymeric dental materials, yet methods that can accurately quantify PS have been limited in part due to the complexity of polymerization, and in part due to the instrumentation itself. METHOD: In this study, we performed analytical and finite element analyses on a cantilever-beam based tensometer that is used to evaluate shrinkage stresses during the polymerization of dental restorative composites. RESULTS: The PS generated by a commercial dental composite determined using our new tensometer agrees with the predicted trend when the beam length and/or specimen height is varied. SIGNIFICANCE: This work demonstrates the importance of beam dimension and component relative rigidity to the accuracy of PS evaluation. An analytical solution is also derived for the vertical beam deflection, which can be used for any combination of bending and shearing to properly calculate the PS. In addition, an easy-to-conduct calibration procedure is provided that is desirable for periodic tensometer recalibration.


Assuntos
Resinas Compostas/química , Análise do Estresse Dentário/instrumentação , Teste de Materiais/instrumentação , Polimerização , Calibragem , Análise do Estresse Dentário/métodos , Elasticidade , Análise de Elementos Finitos , Estresse Mecânico , Resistência à Tração
8.
Materials (Basel) ; 2(1): 169-180, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26413236

RESUMO

The objective of the study was to assess the effect of the cavity design factor (C-factor) on polymerization stress development (PSD) in resin composites. An experimental resin (BT resin) was prepared, which contained 2,2-bis[p-(2'hydroxy-3'-methacryloxypropoxy)phenylene]propane (B) and triethylene glycol dimethacrylate (T) in 1:1 mass ratio, and an activator for visible light polymerization. Also an experimental composite with demonstrated remineralizing potential was formulated by inclusion into the BT resin of zirconia-hybridized amorphous calcium phosphate (ACP) filler at a mass fraction of 40 % (BT/ACP composite). A commercial glass-filled composite (TPH) was used as a control. To assess the effect of the test geometry on PSD, C-factor was systematically varied between 0.8 and 6.0 by varying the height of the cylindrical composite specimens. The measured PSD values obtained by cantilever beam tensometry for specimens with variable C-factors were normalized for mass to specimens with a C-factor of 1.33 (h=2.25 mm) as controls to give calculated PSD values. Degrees of vinyl conversions (DC) attained in the TPH control and in the experimental BT/ACP composites were measured by near-infrared spectroscopy. In both the TPH and BT/ACP composite series, PSDcalc increased with the increasing C-factor, confirming the hypothesis that the C-factor value influences PSD values. The higher PSDmeas and PSDcalc values for the experimental BT/ACP composite compared to the commercial TPH composite probably reflect differences in the type and mass of the resin and filler phases in the two types of composite. These differences also account for the observed variation (21 %) in DC attained in a BT/ACP composite 2 h after cure (69.5 %) and in the DC of the TPH composite (57.5 %) having the same C-factor. The cavity design factor seems to play a key role in influencing the PSD of bonded composites, but other factors such as composite mass and composition also must be considered for their effects on PSD.

9.
J Res Natl Inst Stand Technol ; 114(1): 11-20, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-27504210

RESUMO

The objective of this work was to determine bonding characteristics of a hydrophilic monomer formulation containing polymerizable cyclodextrin derivatives. The hypothesis was that a formulation containing hydrophilic cross-linking diluent comonomers and cyclodextrins with functional groups attached by hydrolytically stable ether linkages could form strong adhesive bonds to dentin. The previously synthesized polymerizable cyclodextrin derivatives were formulated with sorbitol dimethacrylate, methacrylic acid and phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide photoinitiator. The same formulation without the polymerizable cyclodextrin derivatives isolated the effects of the polymerizable cyclodextrin derivatives. A commercial self-etching bonding system was tested as a comparative control. Ground mid-coronal dentin was etched with 37 % phosphoric acid (H3PO4) for 15 s and rinsed with distilled water for 10 s. Formulations were applied to the moist dentin and light-cured 10 s. A packable composite was then applied through irises and light-cured 60 s. Teeth were stored in water for 24 h before bonds were tested in a shearing orientation. One-way ANOVA was performed on the data. The average values of shear bond strengths were defined as loads at fracture divided by the 4 mm diameter iris areas. The average value of shear bond strength for the formulation containing the polymerizable cyclodextrin derivatives was higher (p < 0.05), where p is a fraction of the probability distribution) than that of the same monomeric formulation except that the polymerizable cyclodextrin derivatives were not included. This was supporting evidence that the polymerizable cyclodextrin derivatives contributed to improved bonding. The average value of shear bond strength for the formulation containing the polymerizable cyclodextrin derivatives was also higher (p < 0.05) than that of the commercial self-etching bonding system. These preliminary results are in accordance with the hypothesis that formulations containing polymerizable cyclodextrin derivatives can form strong adhesive bonds to hydrated dentin surfaces. Further improvements in bonding to hydrated biological tissues by use of advanced formulations are anticipated.

10.
Biophys J ; 95(4): 2017-26, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18487295

RESUMO

A model mineralizing system was subjected to magnetic resonance microscopy to investigate how water proton transverse (T(2)) relaxation times and magnetization transfer ratios can be applied to monitor collagen mineralization. In our model system, a collagen sponge was mineralized with polymer-stabilized amorphous calcium carbonate. The lower hydration and water proton T(2) values of collagen sponges during the initial mineralization phase were attributed to the replacement of the water within the collagen fibrils by amorphous calcium carbonate. The significant reduction in T(2) values by day 6 (p < 0.001) was attributed to the appearance of mineral crystallites, which were also detected by x-ray diffraction and scanning electron microscopy. In the second phase, between days 6 and 13, magnetic resonance microscopy properties appear to plateau as amorphous calcium carbonate droplets began to coalesce within the intrafibrillar space of collagen. In the third phase, after day 15, the amorphous mineral phase crystallized, resulting in a reduction in the absolute intensity of the collagen diffraction pattern. We speculate that magnetization transfer ratio values for collagen sponges, with similar collagen contents, increased from 0.25 +/- 0.02 for control strips to a maximum value of 0.31 +/- 0.04 at day 15 (p = 0.03) because mineral crystals greatly reduce the mobility of the collagen fibrils.


Assuntos
Colágeno/química , Colágeno/ultraestrutura , Cristalografia/métodos , Imageamento por Ressonância Magnética/métodos , Microscopia/métodos , Minerais/química
11.
Eur J Oral Sci ; 112(5): 452-7, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15458506

RESUMO

An experimental resin-based bioactive calcium phosphate cement, intended as a pulp capping and basing material, was evaluated for dentin shear bond strength and microleakage. The interfacial morphology was examined by scanning electron microscopy (SEM). For microleakage, dentin cavities without (Group A) or after (Group B) acid etching were restored with the calcium phosphate cement. A resin-based calcium hydroxide (VLC Dycal; Group C) was used as control material according to the manufacturer's instructions. After water storage and thermocycling, the microleakage was scored using a AgNO(3) staining procedure. For the shear bond strength, flat exposed dentin surfaces were treated as for the microleakage test. Metal irises pressed against the dentin surface were filled with the cements, which were photocured. Both tests were carried out after 1 wk. While acid etching did not result in significantly greater microleakage, it led to higher shear bond strength, and allowed, as shown by SEM, the formation of a hybrid layer and resin tags. Both groups treated with the calcium phosphate cement had significantly lower microleakage scores and higher mean shear bond strength values than the groups treated with the control material.


Assuntos
Fosfatos de Cálcio/química , Colagem Dentária , Forramento da Cavidade Dentária , Infiltração Dentária/classificação , Capeamento da Polpa Dentária , Dentina/ultraestrutura , Cimentos de Resina/química , Condicionamento Ácido do Dente , Benzoatos/química , Hidróxido de Cálcio/química , Humanos , Teste de Materiais , Metacrilatos/química , Microscopia Eletrônica de Varredura , Minerais/química , Resistência ao Cisalhamento , Coloração pela Prata , Propriedades de Superfície
12.
Dent Mater ; 20(3): 220-7, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15209227

RESUMO

OBJECTIVE: Recent studies used silica-fused whiskers to increase the strength and toughness of resin composites. This study investigated the three-body wear of whisker composites. It was hypothesized that the whisker composites would be more wear resistant than composites reinforced with fine glass particles, and the whisker-to-silica filler ratio would significantly affect wear. METHODS: Silica particles were mixed with silicon nitride whiskers at seven different whisker/(whisker + silica) mass fractions (%): 0, 16.7, 33.3, 50, 66.7, 83.3, and 100. Each mixture was heated at 800 degrees C to fuse the silica particles onto the whiskers. Each powder was then silanized and incorporated into a dental resin to make the wear specimens. A four-station wear machine was used with specimens immersed in a slurry containing polymethyl methacrylate beads, and a steel pin was loaded and rotated against the specimen at a maximum load of 76 N. RESULTS: Whisker-to-silica ratio had significant effects (one-way ANOVA; p < 0.001) on wear. After 4 x 10(5) wear cycles, the whisker composite at whisker/(whisker + silica) of 16.7% had a wear scar diameter (mean +/- sd; n = 6) of (643 +/- 39) microm and a wear depth of (82 +/- 19) microm, significantly less than a wear scar diameter of (1184 +/- 34) microm and a wear depth of (173 +/- 15) microm of a commercial prosthetic composite reinforced with fine glass particles (Tukey's multiple comparison). SEM examination revealed that, instead of whiskers protruding from the worn surface, the whiskers were worn with the composite surface, resulting in relatively smooth wear surfaces. SIGNIFICANCE: Silica-fused whisker reinforcement produced dental resin composites that exhibited high resistance to wear with smooth wear surfaces. These properties, together with the strength and fracture toughness being twice those of current glass particle-reinforced composites, may help extend the use of resin composite to large stress-bearing posterior restorations.


Assuntos
Resinas Compostas/química , Desgaste de Restauração Dentária , Análise de Variância , Compostos Inorgânicos de Carbono/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Compostos de Silício , Dióxido de Silício , Estatísticas não Paramétricas , Propriedades de Superfície
13.
J Am Soc Mass Spectrom ; 15(2): 168-79, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14766284

RESUMO

In the interest of a more thorough understanding of the relationship between sample deposition technique and the quality of data obtained using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, details of the electrospray (ES) process of sample deposition are investigated using a number of techniques. Sample morphology was observed with scanning electron microscopy (SEM) and atomic force microscopy (AFM), while matrix-enhanced secondary ion mass spectrometry (MESIMS) monitored surface coverage. Electrospray deposition reduces the analyte segregation that can occur during traditional dried droplet deposition for MALDI. We attribute statistically significant improvements in the reproducibility of signal intensity and MALDI average molecular mass measurements to the ES sample deposition technique.

14.
Dent Mater ; 19(5): 359-67, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12742430

RESUMO

OBJECTIVE: Whiskers were recently used to reinforce dental composites to extend their use to large stress-bearing restorations. The aim of this study was to investigate the effects of different types of whiskers on composite properties. METHODS: Silicon nitride and silicon carbide whiskers were each mixed with silica particles at whisker/silica mass ratios of 0:1, 1:5, 1:2, 1:1, 2:1, 5:1, and 1:0, and thermally treated. The composite was heat-cured at 140 degrees C. Strength and fracture toughness were measured in flexure, while elastic modulus and hardness were measured with nano-indentation. RESULTS: Both whisker type and whisker/silica ratio had significant effects on composite properties (two-way ANOVA; p<0.001). Silicon nitride whiskers increased the composite strength and toughness more than did silicon carbide. Silicon carbide whiskers increased the modulus and hardness more than silicon nitride did. The silicon nitride whisker composite reached a strength (mean+/-SD; n=6) of 246+/-33 MPa at whisker/silica of 1:1, while the silicon carbide whisker composite reached 210+/-14 MPa at 5:1. Both were significantly higher than 114+/-18 MPa of a prosthetic control and 109+/-23 MPa of an inlay/onlay control (Tukey's multiple comparison test; family confidence coefficient=0.95). Fracture toughness and work-of-fracture were also increased by a factor of two. Higher whisker/silica ratio reduced the composite brittleness to 1/3 that of the inlay/onlay control. SIGNIFICANCE: Whisker type and whisker/silica ratio are key microstructural parameters that determine the composite properties. Reinforcement with silica-fused whiskers results in novel dental composites that possess substantially higher strength and fracture toughness, and lower brittleness than the non-whisker control composites.


Assuntos
Resinas Compostas/química , Análise de Variância , Compostos Inorgânicos de Carbono , Análise do Estresse Dentário , Elasticidade , Dureza , Restaurações Intracoronárias , Teste de Materiais , Microscopia Eletrônica de Varredura , Compostos de Silício
15.
Am J Dent ; 15(3): 177-84, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12469756

RESUMO

PURPOSE: To evaluate the effects of thermally stressing composite-dentin bonds in teeth subjected to a modified microtensile bond test that allowed application of two bonding agents side-by-side to the same tooth. MATERIALS AND METHODS: Extracted human molars with a slot dissecting the occlusal dentin surface were conditioned and primed on one side with Prime & Bond NT (PBNT) and Prime One Mirage (P-One) on the other side. The composite was light-cured onto the surface. Approximately 0.5 mm thick dumbbell-shaped tensile specimens were tested after 24-hour water storage or after thermocycling 2400 times at 5 and 55 degrees C. Interfacial morphologies were evaluated by scanning electron microscopy (SEM). RESULTS: Mean tensile bond strengths (TBS +/- standard deviation) were (36 +/- 24 MPa and 31 +/- 16 MPa) for PBNT, and (51 +/- 25 MPa and 40 +/- 18 MPa) for P-One without and with thermocycling, respectively. 97% of all tested specimens failed adhesively. Differences between the bonding systems and the therrmal treatments were significant (two-way ANOVA, P < 0.05). Regression analysis showed regional correlation between mean TBS of each bonding agent when grouped by the teeth from which they were obtained (r = 0.66, P = 0.002). SEM revealed that both bonding agents effectively wetted the conditioned dentin producing a typical hybrid layer, surface-textured resin tags with multiple lateral branches.


Assuntos
Resinas Compostas/química , Colagem Dentária , Adesivos Dentinários/química , Dentina/ultraestrutura , Condicionamento Ácido do Dente , Adesividade , Análise de Variância , Estudos de Viabilidade , Humanos , Microscopia Eletrônica de Varredura , Ácidos Polimetacrílicos/química , Análise de Regressão , Estresse Mecânico , Propriedades de Superfície , Termodinâmica , Fatores de Tempo , Água/química
16.
J Mater Sci Mater Med ; 13(9): 875-83, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15348553

RESUMO

The mechanical properties of dental resin composites need to be improved in order to extend their use to high stress-bearing applications such as crown and bridge restorations. Recent studies used single crystal ceramic whiskers to reinforce dental composites. The aim of this study was to investigate the effects of thermal cycling on whisker-reinforced composites. It was hypothesized that the whisker composites would not show a reduction in mechanical properties or the breakdown of whisker-resin interface after thermal cycling. Silicon carbide whiskers were mixed with silica particles, thermally fused, then silanized and incorporated into resin to make flexural specimens. The filler mass fraction ranged from 0% to 70%. The specimens were thermal cycled in 5 degrees C and 60 degrees C water baths, and then fractured in three-point bending to measure strength. Nano-indentation was used to measure modulus and hardness. No significant loss in composite strength, modulus and hardness was found after 10(5) thermal cycles (family confidence coefficient=0.95; Tukey's multiple comparison test). The strength of whisker composite increased with filler level up to 60%, then plateaued when filler level was further increased to 70%; the modulus and hardness increased monotonically with filler level. The strength and modulus of whisker composite at 70% filler level were significantly higher than the non-whisker controls both before and after thermal cycling. SEM revealed no separation at the whisker-matrix interfaces, and observed resin remnants on the pulled-out whiskers, indicating strong whisker-resin bonding even after 10(5) thermal cycles. In conclusion, novel dental resin composites containing silica-fused whiskers possessed superior strength and modulus compared to non-whisker composites both before and after thermal cycling. The whisker-resin bonding appeared to be resistant to thermal cycling in water, so that no loss in composite strength or stiffness occurred after prolonged thermal cycling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...