Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000928

RESUMO

In this paper, we present a bolt preload monitoring system, including the system architecture and algorithms. We show how Finite Element Method (FEM) simulations aided the design and how we processed signals to achieve experimental validation. The preload is measured using a Piezoelectric Micromachined Ultrasonic Transducer (PMUT) in pulse-echo mode, by detecting the Change in Time-of-Flight (CTOF) of the acoustic wave generated by the PMUT, between no-load and load conditions. We performed FEM simulations to analyze the wave propagation inside the bolt and understand the effect of different configurations and parameters, such as transducer bandwidth, transducer position (head/tip), presence or absence of threads, as well as the frequency of the acoustic waves. In order to couple the PMUT to the bolt, a novel assembly process involving the deposition of an elastomeric acoustic impedance matching layer was developed. We achieved, for the first time with PMUTs, an experimental measure of bolt preload from the CTOF, with a good signal-to-noise ratio. Due to its low cost and small size, this system has great potential for use in the field for continuous monitoring throughout the operative life of the bolt.

2.
Sensors (Basel) ; 23(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36991764

RESUMO

Accurate application of agrochemicals is an important way to achieve efficient use of chemicals and to combine limited pollution with effective control of weeds, pests, and diseases. In this context, we investigate the potential application of a new delivery system based on ink-jet technology. First, we describe the structure and functionality of ink-jet technology for agrochemical delivery. We then evaluate the compatibility of ink-jet technology with a range of pesticides (four herbicides, eight fungicides, and eight insecticides) and beneficial microbes, including fungi and bacteria. Finally, we investigated the feasibility of using ink-jet technology in a microgreens production system. The ink-jet technology was compatible with herbicides, fungicides, insecticides, and beneficial microbes that remained functional after passing through the system. In addition, ink-jet technology demonstrated higher area performance compared to standard nozzles under laboratory conditions. Finally, the application of ink-jet technology to microgreens, which are characterized by small plants, was successful and opened the possibility of full automation of the pesticide application system. The ink-jet system proved to be compatible with the main classes of agrochemicals and showed significant potential for application in protected cropping systems.


Assuntos
Fungicidas Industriais , Herbicidas , Inseticidas , Praguicidas , Praguicidas/química , Fungicidas Industriais/química , Tinta , Agroquímicos , Tecnologia
3.
Sensors (Basel) ; 23(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36772435

RESUMO

A novel approach for dynamic microwave modulation is proposed in the form of reconfigurable resonant circuits. This result is obtained through the monolithic integration of double split ring resonators (DSRRs) with microelectromechanical actuators (MEMS) for geometrical tuning. Two configurations were analyzed to achieve a controlled deformation of the DSRRs' metamaterial geometry by mutual rotation or extrusion along the azimuthal direction of the two constituent rings. Then, the transfer function was numerically simulated for a reconfigurable MEMS-DSRR hybrid architecture where the DSRR is embedded onto a realistic piezo actuator chip. In this case, a 370 MHz resonance frequency shift was obtained under of a 170 µm extrusion driven by a DC voltage. These characteristics in combination with a high Q factor and dimensions compatible with standard CMOS manufacturing techniques provide a step forward for the production of devices with applications in multiband telecommunications and wireless power transfer and in the IoT field.

4.
Sensors (Basel) ; 18(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545109

RESUMO

In this work, we present the results of the opto⁻electro⁻mechanical characterization of tunable micro-lenses, Tlens®, performed with a single-spot optical measuring system. Tested devices are composed of a transparent soft polymer layer that is deposited on a supporting glass substrate and is covered by a glass membrane with a thin-film piezoelectric actuator on top. Near-infrared optical low-coherence reflectometry is exploited for both static and low-frequency dynamic analyses in the time domain. Optical thickness of the layers and of the overall structure, actuation efficiency, and hysteretic behavior of the piezo-actuator as a function of driving voltage are obtained by processing the back-reflected signal in different ways. The use of optical sources with relatively short coherence lengths allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces, furthermore, selecting the plane/layer to be monitored. We finally report results of direct measurements of Tlens® optical power as a function of driving voltage, performed by redirecting a He-Ne laser beam on the lens and monitoring the focused spot at various distances with a digital camera.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...