Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Indoor Air ; 29(3): 390-402, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30624800

RESUMO

Analysis of the dust from heating, ventilation, and air conditioning (HVAC) filters is a promising long-term sampling method to characterize airborne particle-bound contaminants. This filter forensics (FF) approach provides valuable insights about differences between buildings, but does not allow for an estimation of indoor concentrations. In this investigation, FF is extended to quantitative filter forensics (QFF) by using measurements of the volume of air that passes through the filter and the filter efficiency, to assess the integrated average airborne concentrations of total fungal and bacterial DNA, 36 fungal species, endotoxins, phthalates, and organophosphate esters (OPEs) based on dust extracted from HVAC filters. Filters were collected from 59 homes located in central Texas, USA, after 1 month of deployment in each summer and winter. Results showed considerable differences in the concentrations of airborne particle-bound contaminants in studied homes. The airborne concentrations for most of the analytes are comparable with those reported in the literature. In this sample of homes, the HVAC characterization measurements varied much less between homes than the variation in the filter dust concentration of each analyte, suggesting that even in the absence of HVAC data, FF can provide insight about concentration differences for homes with similar HVAC systems.


Assuntos
Filtros de Ar/microbiologia , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Monitoramento Ambiental/métodos , Ar Condicionado/instrumentação , Microbiologia do Ar , DNA Bacteriano/análise , Endotoxinas/análise , Fungos/isolamento & purificação , Calefação/instrumentação , Habitação , Humanos , Organofosfatos/análise , Ácidos Ftálicos/análise , Estações do Ano , Texas , Ventilação/instrumentação
2.
Environ Int ; 121(Pt 1): 916-930, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30347374

RESUMO

Phthalates and organophosphates are ubiquitous indoor semi-volatile organic contaminants (SVOCs) that have been widely used as plasticizers and flame retardants in consumer products. Although many studies have assessed their levels in house dust, only a few used dust samples captured by filters of building heating, ventilation, and air conditioning (HVAC) systems. HVAC filters collect particles from large volumes of air over a long period of time (potentially known) and thus provide a spatially and temporally integrated concentration. This study measured concentrations of phthalates and organophosphates in HVAC filter dust and settled floor dust collected from low-income homes in Texas, United States, in both the summer and winter seasons. The most frequently detected compounds were benzyl butyl phthalate (BBzP), di-(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DnOP), tris (1-chloro-2-propyl) phosphate (TCIPP), triphenyl phosphate (TPHP), and tris (1,3-dichloroisopropyl) phosphate (TDCIPP). The median level of TCIPP in settled dust was 3- to 180-times higher than levels reported in other studies of residential homes. Significantly higher concentrations were observed in HVAC filter dust as compared to settled dust for most of the frequently detected compounds in both seasons, except for several phthalates in the winter. SVOC concentrations in settled dust in winter were generally higher than in summer, while different seasonality patterns were found for HVAC filter dust. Settled dust samples from homes with vinyl flooring contained significantly higher levels of BBzP and DEHP as compared to homes with other types of floor material. The concentration of DEHP and TDCIPP in settled dust also significantly associated with the presence of carpet in homes. Cleaning activities to remove dust from furniture actually increased the levels of certain compounds in HVAC filter dust, while frequent vacuuming of carpet helped to decrease the concentrations of some compounds in settled dust. Additionally, the size and age of a given house also correlated with the levels of some pollutants in dust. A statistically significant association between DEHP concentration in HVAC filter dust in summer and the severity of asthma in children was observed. These results suggest that HVAC filter dust represents a useful sampling medium to monitor indoor SVOC concentrations with high sensitivity; in contrast, when using settled dust, in addition to consideration of seasonal influences, it is critical to know the sampling location because the type and level of SVOCs may be related to local materials used there.


Assuntos
Poluentes Atmosféricos/análise , Asma/epidemiologia , Poeira/análise , Retardadores de Chama/análise , Organofosfatos/análise , Ácidos Ftálicos/análise , Plastificantes/análise , Ar Condicionado , Filtros de Ar , Poluição do Ar em Ambientes Fechados/análise , Asma/fisiopatologia , Criança , Monitoramento Ambiental , Feminino , Pisos e Cobertura de Pisos , Calefação , Humanos , Masculino , Pobreza , Testes de Função Respiratória , Estações do Ano , Texas , Ventilação
3.
Materials (Basel) ; 11(8)2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30044390

RESUMO

This work aims to understand the effects of particle concentration on the filtration of nanoparticles using nanofibrous filters. The filtration efficiencies of triple modal tungsten oxide (WOx) nanoparticles were experimentally determined at three different concentrations for the size range of 0.82⁻3.3 nm in diameter. All tests were conducted using polyvinyl alcohol (PVA) nano-fibrous filters at an air relative humidity of 2.9%. Results showed that the filtration efficiencies of sub-3.3 nm nanoparticles depended on the upstream particle concentration. The lower the particle concentration was, the higher the filtration efficiency was.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...