Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Sci ; 29(1): 184-192, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34750769

RESUMO

Mitochondrial dysfunction is an underlying cause of childhood neurological disease secondary to the crucial role of mitochondria in proper neurodevelopment. We hypothesized that chronic intrauterine hypoxia (HPX) induces mitochondrial deficits by altering mitochondrial biogenesis and dynamics in the fetal brain. Pregnant guinea pigs were exposed to either normoxia (NMX, 21%O2) or HPX (10.5%O2) starting at 28-day (early onset, EO-HPX) or 50-day (late onset, LO-HPX) gestation until term (65 days). Near-term male and female fetuses were extracted from anesthetized sows, and mitochondria were isolated from excised fetal forebrains (n = 6/group). Expression of mitochondrial complex subunits I-V (CI-CV), fission (Drp-1), and fusion (Mfn-2) proteins was measured by Western blot. CI and CIV enzyme activities were measured by colorimetric assays. Chronic HPX reduced fetal body wts and increased (P < 0.05) brain/body wt ratios of both sexes. CV subunit levels were increased in EO-HPX males only and CII levels increased in LO-HPX females only compared to NMX. Both EO- and LO-HPX decreased CIV activity in both sexes but had no effect on CI activity. EO-HPX increased Drp1 and decreased Mfn2 levels in males, while LO-HPX had no effect on either protein levels. In females, both EO-HPX and LO-HPX increased Drp1 but had no effect on Mfn2 levels. Chronic HPX alters abundance and activity of select complex subunits and shifts mitochondrial dynamics toward fission in a sex-dependent manner in the fetal guinea pig brain. This may be an underlying mechanism of reduced respiratory efficiency leading to disrupted metabolism and increased vulnerability to a second neurological injury at the time of birth in HPX fetal brains.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hipóxia Fetal/metabolismo , Prosencéfalo/metabolismo , Animais , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Cobaias , Dinâmica Mitocondrial , Gravidez
2.
Bioenergy Res ; 11(3): 528-537, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30416644

RESUMO

Increasing concerns on environmental and economic issues linked to fossil fuel use has driven great interest in cyanobacteria as third generation biofuel agents. In this study, the biodiesel potential of a model photosynthetic cyanobacterium, Fremyella diplosiphon, was identified by fatty acid methyl esters (FAME) via direct transesterification. Total lipids in wild type (Fd33) and halotolerant (HSF33-1 and HSF33-2) strains determined by gravimetric analysis yielded 19% cellular dry weight (CDW) for HSF33-1 and 20% CDW for HSF33-2, which were comparable to Fd33 (18% CDW). Gas chromatography-mass spectrometry detected a high ratio of saturated to unsaturated FAMEs (2.48-2.61) in transesterified lipids, with methyl palmitate being the most abundant (C16:0). While theoretical biodiesel properties revealed high cetane number and oxidative stability, high cloud and pour point values indicated that fuel blending could be a viable approach. Significantly high FAME abundance in total transesterified lipids of HSF33-1 (40.2%) and HSF33-2 (69.9%) relative to Fd33 (25.4%) was identified using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry, indicating that robust salt stress response corresponds to higher levels of extractable FAME. Alkanes, a key component in conventional fuels, were present in F. diplosiphon transesterified lipids across all strains confirming that natural synthesis of these hydrocarbons is not inhibited during biodiesel production. While analysis of photosynthetic pigments and phycobiliproteins did not reveal significant differences, FAME abundance varied significantly in wild type and halotolerant strains indicating that photosynthetic pathways are not the sole factors that determine fatty acid production. We characterize the potential of F. diplosiphon for biofuel production with FAME yields in halotolerant strains higher than the wild type with no loss in photosynthetic pigmentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...