Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Environ Qual ; 38(6): 2382-93, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19875794

RESUMO

The leaching of soil particles and surface applied 14C-labeled glyphosate and pendimethalin from intact soil columns (height: 50 cm; diameter: 30 cm) were investigated, and the relative significance of particle-facilitated pesticide transport was quantified. Investigations were performed with a recently plowed (four columns) and an untilled (five columns) sandy loam soil. Leaching was driven by three irrigation events (15 mm h(-1); 2 h each). Samples of the leachate were filtered immediately (within 1.5 minutes) using 20 nm filters, and the 14C-pesticide content was determined for filtered and unfiltered samples. Pesticide leaching was driven by preferential water flow in macropores. For the plowed structure, 68+/-10% of the leached glyphosate (average of 6 events+/-std.) was bound to particles whereas significantly less glyphosate was bound to particles in leachate from minimally disturbed columns (17+/-12%). Thus, the results suggest that soil structure affected the mode of transport of glyphosate. It is likely that glyphosate sorbed strongly when applied on recently plowed soil (Kd=503 L kg(-1) for the soil), and that it could be mobilized and transported independently of soil particles more easily when applied on the minimally disturbed soil covered in part with crop residues (Kd<1 L kg(-1) for straw). Significantly less amounts of soil particles were leached from minimally disturbed (119-247 mg) than from recently plowed (441-731 mg) columns. The significance of particle-facilitated pendimethalin leaching could not be accurately quantified due to disagreement between control measurements based on both 14C-activity and chemical analyses.


Assuntos
Compostos de Anilina/análise , Glicina/análogos & derivados , Herbicidas/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Adsorção , Animais , Glicina/análise , Tamanho da Partícula , Solo , Glifosato
2.
J Environ Qual ; 36(3): 753-63, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17412910

RESUMO

Mobility of dissolved organic matter (DOM) strongly affects the export of nitrogen (N) and phosphorus (P) from soils to surface waters. To study the sorption and mobility of dissolved organic C and P (DOC, DOP) in soil, the pH-dependent sorption of DOM to samples from Ap, EB, and Bt horizons from a Danish agricultural Humic Hapludult was investigated and a kinetic model applicable in field-scale models tested. Sorption experiments of 1 to 72 h duration were conducted at two pH levels (pH 5.0 and 7.0) and six initial DOC concentrations (0-4.7 mmol L(-1)). Most sorption/desorption occurred during the first few hours. Dissolved organic carbon and DOP sorption decreased strongly with increased pH and desorption dominated at pH 7, especially for DOC. Due to fractionation during DOM sorption/desorption at DOC concentrations up to 2 mmol L(-1), the solution fraction of DOM was enriched in P indicating preferred leaching of DOP. The kinetics of sorption was expressed as a function of how far the solution DOC or DOP concentrations deviate from "equilibrium." The model was able to simulate the kinetics of DOC and DOP sorption/desorption at all concentrations investigated and at both pH levels making it useful for incorporation in field-scale models for quantifying DOC and DOP dynamics.


Assuntos
Agricultura , Fósforo/análise , Fósforo/química , Solo/análise , Carbono/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Teóricos , Compostos Orgânicos/análise , Compostos Orgânicos/química , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...