Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Med Chem ; 21(12): 1448-57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24304283

RESUMO

It is widely believed that Alzheimer's disease pathogenesis is driven by the production and deposition of the amyloid-ß peptide (Aß) in the brain. In this study, we employ a combination of in silico and in vitro approaches to investigate the inhibitory properties of selected arginine-rich D-enantiomeric peptides (D-peptides) against amyloid aggregation. The D-peptides include D3, a 12-residue peptide with anti-amyloid potencies demonstrated in vitro and in vivo, RD2, a scrambled sequence of D3, as well as truncated RD2 variants. Using a global optimization method together with binding free energy calculations followed by molecular dynamics simulations, we perform a detailed analysis of D-peptide binding to Aß monomer and a fibrillar Aß structure. Results obtained from both molecular simulations and surface plasmon resonance experiments reveal a strong binding of D3 and RD2 to Aß, leading to a significant reduction in the amount of ß structures in both monomer and fibril, which was also demonstrated in Thioflavin T assays. The binding of the D-peptides to Aß is driven by electrostatic interactions, mostly involving the D-arginine residues and Glu11, Glu22 and Asp23 of Aß. Furthermore, we show that the anti-amyloid activities of the D-peptides depend on the length and sequence of the Dpeptide, its ability to form multiple weak hydrophobic interactions with Aß, as well as the Aß oligomer size.


Assuntos
Amiloide/metabolismo , Peptídeos/química , Amiloide/química , Arginina/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...