Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 20(23): 7128-35, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24757042

RESUMO

A straightforward methodology for the synthesis of libraries of chiral tris-ligated cationic platinum complexes and their in situ evaluation as asymmetric carbophilic catalysts in a model domino hydroarylation/cyclization reaction of a 1,6-enyne was developed. A catalyst-generation process based on a combination of a monodentate and a bidentate phosphorus ligand allowed the formation of 108 chiral complexes. One-pot screening of the stereoinduction obtained with this library in a test domino addition/cyclization reaction validated this approach and stressed the key role played by the monodentate ligand partner in obtaining high enantioselectivities. In the case of two challenging substrate/nucleophile combinations, the combinatorial approach resulted in a significant gain in enantioselectivity.

2.
Chemistry ; 19(47): 15972-8, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24123302

RESUMO

A series of heteroleptic copper(I) complexes with bidentate PP and NN chelate ligands was prepared and successfully applied as photosensitizers in the light-driven production of hydrogen, by using [Fe3(CO)12] as a water-reduction catalyst (WRC). These systems efficiently reduces protons from water/THF/triethylamine mixtures, in which the amine serves as a sacrificial electron donor (SR). Turnover numbers (for H) up to 1330 were obtained with these fully noble-metal-free systems. The new complexes were electrochemically and photophysically characterized. They exhibited a correlation between the lifetimes of the MLCT excited state and their efficiency as photosensitizers in proton-reduction systems. Within these experiments, considerably long excited-state lifetimes of up to 54 µs were observed. Quenching studies with the SR, in the presence and absence of the WRC, showed that intramolecular deactivation was more efficient in the former case, thus suggesting the predominance of an oxidative quenching pathway.

3.
Nature ; 495(7439): 85-9, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23446345

RESUMO

Hydrogen produced from renewable resources is a promising potential source of clean energy. With the help of low-temperature proton-exchange membrane fuel cells, molecular hydrogen can be converted efficiently to produce electricity. The implementation of sustainable hydrogen production and subsequent hydrogen conversion to energy is called "hydrogen economy". Unfortunately, its physical properties make the transport and handling of hydrogen gas difficult. To overcome this, methanol can be used as a material for the storage of hydrogen, because it is a liquid at room temperature and contains 12.6 per cent hydrogen. However, the state-of-the-art method for the production of hydrogen from methanol (methanol reforming) is conducted at high temperatures (over 200 degrees Celsius) and high pressures (25-50 bar), which limits its potential applications. Here we describe an efficient low-temperature aqueous-phase methanol dehydrogenation process, which is facilitated by ruthenium complexes. Hydrogen generation by this method proceeds at 65-95 degrees Celsius and ambient pressure with excellent catalyst turnover frequencies (4,700 per hour) and turnover numbers (exceeding 350,000). This would make the delivery of hydrogen on mobile devices--and hence the use of methanol as a practical hydrogen carrier--feasible.

4.
Angew Chem Int Ed Engl ; 52(1): 419-23, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23047871

RESUMO

Of noble descent: a fully noble-metal-free system for the photocatalytic reduction of water at room temperature has been developed. This system consists of Cu(I) complexes as photosensitizers and [Fe(3)(CO)(12)] as the water-reduction catalyst. The novel Cu-based photosensitizers are relatively inexpensive, readily available from commercial sources, and stable to ambient conditions, thus making them an attractive alternative to the widely used noble-metal based systems.

5.
Chemistry ; 18(40): 12749-58, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22915473

RESUMO

Molecularly defined Ir complexes and different samples of supported IrO(2) nanoparticles have been tested and compared in the catalytic water oxidation with cerium ammonium nitrate (CAN) as the oxidant. By comparing the activity of nano-scaled supported IrO(2) particles to the one of organometallic complexes it is shown that the overall activity of the homogeneous Ir precursors is defined by both the formation of the homogeneous active species and its conversion to Ir(IV)-oxo nanoparticles. In the first phase of the reaction the activity is dominated by the homogeneous active species. With increasing reaction time, the influence of nano-sized Ir-oxo particles becomes more evident. Notably, the different conversion rates of the homogeneous precursor into the active species as well as the conversion into Ir-oxo nanoparticles and the different particle sizes have a significant influence on the overall activity. In addition to the homogeneous systems, IrO(2)@MCM-41 has also been synthesized, which contains stabilized nanoparticles of between 1 and 3 nm in size. This latter system shows a similar activity to IrCl(3)⋅xH(2)O and complexes 4 and 5. Mechanistic insights were obtained by in situ X-ray absorption spectroscopy and scanning transmission electron microscopy.

6.
Dalton Trans ; 41(29): 8813-21, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22714794

RESUMO

We report on the synthesis, metal coordination, and catalytic impact of histidylidene, a histidine-derived N-heterocyclic carbene (NHC) ligand. The histidinium salt 3, comprising methyl substituents at both heterocyclic nitrogens and protected at the C- and N-terminus of the amino acid, was rhodated and iridated by a transmetallation protocol using Ag(2)O. Ambient temperature and short reaction times were pivotal for full retention of configuration at the α-carbon. The stereospecificity of the reaction was conveniently probed by (31)P NMR spectroscopy after transmetallation with rhodium(I) and coordination of enantiopure (S)-Ph-binepine. The histidylidene rhodium complexes are highly efficient catalysts for the mild hydrosilylation of ketones. For the cationic complexes [Rh(cod)(histidylidene)(phosphine)](+), lowering the temperature shifted the rate-limiting step of the catalytic reaction to an earlier stage that is not enantioselective. Hence the asymmetric induction-which is governed by the chiral phosphine-did not improve at low temperature.


Assuntos
Complexos de Coordenação/química , Histidina/análogos & derivados , Catálise , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Compostos Heterocíclicos/química , Irídio/química , Ligantes , Metano/análogos & derivados , Conformação Molecular , Fosfinas , Ródio/química , Estereoisomerismo , Temperatura
7.
Dalton Trans ; 41(25): 7474-84, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22584825

RESUMO

The reaction of the neutral Pd complex [Pd(CH(3))Cl(cod)] with the potentially terdentate 2-oxazolinyl phenanthroline ligands 1-3 affords the corresponding cationic dinuclear Pd-complexes 1a-3a, which can be isolated in the solid state in good yields. By treatment with AgPF(6) the complexes 1a-3a were converted into the corresponding hexafluorophosphate derivatives 1b-3b, where both the ligand units feature a terdentate coordination around the two Pd-centres with the phenanthroline fragment of each unit displaying a chelate coordination to one Pd-centre, while the corresponding oxazolinyl pendant acts as a bridging ligand towards the second Pd-centre. The persistence of this dimeric structure of 1b-3b in CD(2)Cl(2) solution was confirmed by (15)N-NMR experiments at natural abundance, which clearly show the binding to the metal of all of the nitrogen donors, as well as the overall C(2) symmetry of the compound. In consequence of the different strengths of the relevant ion-pair, the dimeric structure of the complex undergoes partial fragmentation in the case of the chloride derivatives 1a-3a, as evidenced from the (15)N-NMR spectra. Complexes 1b-3b are active catalysts in styrene alternate carbonylation, where, under very mild conditions (30 °C and 1 atm of CO), they provide oligomers with 3-5 repetitive units as the exclusive or prevailing product. When traces of the CO/styrene polyketones are also formed, their (13)C-NMR characterization shows that they are stereochemically homogeneous with a unique syndio-tacticity. This result implies that Pd-complexes able to induce a complete enantioface discrimination in the insertion step of the alkene during the catalytic cycle of the styrene alternate carbonylation have been produced for the first time.

8.
Chemistry ; 18(11): 3220-5, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22334566

RESUMO

Novel phenylazole ligands were applied successfully in the synthesis of cyclometalated iridium(III) complexes of the general formula [Ir(phenylazole)(2)(bpy)]PF(6) (bpy=2,2'-bipyridine). All complexes were fully characterized by NMR, IR, and MS spectroscopic studies as well as by cyclic voltammetry. Three crystal structures obtained by X-ray analysis complemented the spectroscopic investigations. The excited-state lifetimes of the iridium complexes were determined and showed to be in the range of several hundred ns to multiple µs. All obtained iridium complexes were active as photosensitizers in catalytic hydrogen evolution from water in the presence of triethylamine as a sacrificial reducing agent. Applying an in situ formed iron-based water reduction catalyst derived from [HNEt(3)](+) [HFe(3)(CO)(11)](-) and tris[3,5-tris-(trifluoromethyl)-phenyl]phosphine as the ligand, [Ir(2-phenylbenz-oxazole)(2)-(bpy)]PF(6) proved to be the most efficient complex giving a quantum yield of 16% at 440 nm light irradiation.

9.
Chem Commun (Camb) ; 48(16): 2186-8, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22251950

RESUMO

The mechanism of asymmetric hydrogenation catalyzed by [Rh(NBD)((R)-PhenylBinepine)(2)]SbF(6)1 has been studied by NMR experiments and DFT computations. Either the low-temperature hydrogenation of the catalyst-substrate adduct 4 or the reaction of solvate dihydride 6 with MAC produced the hydrogenation product with over 99% ee (S).


Assuntos
Compostos Organometálicos/química , Fosfinas/química , Ródio/química , Catálise , Hidrogenação , Espectroscopia de Ressonância Magnética , Modelos Moleculares
11.
Chemistry ; 17(45): 12683-95, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21956660

RESUMO

The mechanism of the asymmetric hydrogenation of methyl (Z)-2-acetamidocinnamate (mac) catalysed by [Rh(MonoPhos)(2)(nbd)]SbF(6) (MonoPhos: 3,5-dioxa-4-phosphacyclohepta[2,1-a:3,4-a']dinaphthalen-4-yl)dimethylamine) was elucidated by using (1)H, (31)P and (103)Rh NMR spectroscopy and ESI-MS. The use of nbd allows one to obtain in pure form the rhodium complex that contains two units of the ligand. In contrast to the analogous complexes that contain cis,cis-1,5-cyclooctadiene (cod), this complex shows well-resolved NMR spectroscopic signals. Hydrogenation of these catalyst precursors at 1 bar total pressure gave rise to the formation of a bimetallic complex of general formula [Rh(MonoPhos)(2)](2)(SbF(6))(2); no solvate complexes were detected. In the dimeric complex both rhodium atoms are ligated to two MonoPhos ligands but, in addition, each rhodium atom also binds to one of the binaphthyl rings of a ligand that is bound to the other rhodium metal. Upon addition of mac, a mixture of diastereomeric complexes [Rh(MonoPhos)(2)(mac)]SbF(6) is formed in which the substrate is bound in a chelate fashion to the metal. Upon hydrogenation, these adducts are converted into a new complex [Rh(MonoPhos)(2){mac(H)(2)}]SbF(6) in which the methyl phenylalaninate mac(H)(2) is bound through its aromatic ring to rhodium. Addition of mac to this complex leads to displacement of the product by the substrate. No hydride intermediates could be detected and no evidence was found for the involvement at any stage of the process of complexes with only one coordinated MonoPhos. The collected data suggest that the asymmetric hydrogenation follows a Halpern-like mechanism in which the less abundant substrate-catalyst adduct is preferentially hydrogenated to phenylalanine methyl ester.


Assuntos
Alcenos/química , Compostos Organometálicos/química , Compostos Organofosforados/química , Ródio/química , Catálise , Hidrogenação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Estereoisomerismo
12.
Chemistry ; 17(25): 6998-7006, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21557356

RESUMO

The synthesis of novel, monocationic iridium(III) photosensitisers (Ir-PSs) with the general formula [Ir(III)(C^N)(2)(N^N)](+) (C^N: cyclometallating phenylpyridine ligand, N^N: neutral bidentate ligand) is described. The structures obtained were examined by cyclic voltammetry, UV/Vis and photoluminescence spectroscopy and X-ray analysis. All iridium complexes were tested for their ability as photosensitisers to promote homogeneously catalysed hydrogen generation from water. In the presence of [HNEt(3)][HFe(3)(CO)(11)] as a water-reduction catalyst (WRC) and triethylamine as a sacrificial reductant (SR), seven of the new iridium complexes showed activity. [Ir(6-iPr-bpy)(ppy)(2)]PF(6) (bpy: 2,2'-bipyridine, ppy: 2-phenylpyridine) turned out to be the most efficient photosensitiser. This complex was also tested in combination with other WRCs based on rhodium, platinum, cobalt and manganese. In all cases, significant hydrogen evolution took place. Maximum turnover numbers of 4550 for this Ir-PS and 2770 for the Fe WRC generated in situ from [HNEt(3)][HFe(3)(CO)(11)] and tris[3,5-bis(trifluoromethyl)phenyl]phosphine was obtained. These are the highest overall efficiencies for any Ir/Fe water-reduction system reported to date. The incident photon to hydrogen yield reaches 16.4% with the best system.

13.
Chem Soc Rev ; 40(7): 3744-63, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21547309

RESUMO

The atropisomeric structure of 4,5-dihydro-3H-dinaphtho[2,1-c;1',2'-e]phosphepine is the common axially chiral scaffold of a library of monophosphine ligands nicknamed BINEPINES that have shown a quite remarkable stereoselection efficiency in a broad variety of enantioselective reactions involving the formation of new C-H or C-C or C-X bonds. In this critical review the properties and scope of this type of chiral ligands are illustrated (70 references).


Assuntos
Naftalenos/química , Fosfinas/química , Catálise , Ligantes , Estereoisomerismo
14.
Chemistry ; 15(32): 7930-7939, 2009 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-19405052

RESUMO

The enantioselective Baeyer-Villiger oxidation of cyclic ketones is a challenging reaction, especially when using environmentally friendly oxidants. The reaction was carried out in water by using soft Lewis acid Pt(II) complexes that have chiral diphosphines as well as monophosphines. Addition of a surfactant is crucial, which leads to the formation of micelles that act as nanoreactors in which the substrate and catalyst encounter each other in an ordered medium that in several cases positively influences both the conversion and the selectivity of the reactions. This is due to the combination of the hydrophobic effect (which confines the components of the reaction in the micelles), together with supramolecular interactions between the partners within the ordered palisade provided by the alkyl chains of the surfactant. For the oxidation of meso-cyclobutanones, addition of surfactant allowed the reaction to proceed in high yields and the enantiometic excess (ee; 56%) was higher than in organic solvents. Subsequent extension to meso-cyclohexanones resulted in a general decrease in yields but an enhancement of enantioselectivity (ee up to 92%) moving from organic to water-surfactant media, regardless of the substrate or the catalyst employed. Different behaviour was observed with chiral cyclobutanones 7 and 10: with 7 the best catalyst was 1 g, whereas with the larger substrate, 10, complexes 1 a-b performed better in terms of enantioselectivity. Each combination of substrate, catalyst and surfactant is a new system and supramolecular reciprocal interactions together with the hydrophobic character of the counterparts play crucial roles. The asymmetric Baeyer-Villiger oxidation in water catalyzed by 1 a-h in the presence of micelles is a viable reaction that often benefits from the hydrophobic effect, leading to substantial increases in enantioselectivity.

15.
Chirality ; 20(3-4): 486-93, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17963200

RESUMO

Gold particles covered with 1,1'-binaphthyl-2,2'-dithiol (BINAS) were prepared. Using size exclusion chromatography, it was possible for the first time to separate the sample into fractions with different sizes and colors. Transmission electron microscopy shows that the particles are very small, in the order of 1 nm or slightly above. The absorption spectra of the separated samples show rich structure. The particles show size-dependent optical activity in metal-based electronic transitions. The shape of both the absorption and circular dichroism spectra of one of the smallest fractions exhibits similarities with the spectra reported for Au 11 covered by 2,2'-bis(diphenylphosphino)-1,1'-biphenyl although the spectra are shifted to shorter wavelengths in the case of the dithiol. The anisotropy factors, Delta epsilon/epsilon of these particles are as large as 4 x 10(-3), which is larger than the values reported for gold particles stabilized by phosphines and water-soluble thiols. This indicates that BINAS is particularly well-suited to impart chirality on to gold particles.

16.
Chem Soc Rev ; 35(3): 226-36, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16505917

RESUMO

Hydrogen transfer reduction processes are attracting increasing interest from synthetic chemists in view of their operational simplicity and high selectivity. In this tutorial review the most significant advances recently achieved in the stereoselective reduction of unsaturated organic compounds catalyzed by homogeneous transition metal complexes are critically reviewed. A sharp growth of the synthetic applications of this technique in the synthesis of fine chemicals is predictable as the use of transition metal catalyzed reactions will become more familiar to synthetic chemists.

18.
Chem Commun (Camb) ; (7): 850-1, 2004 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-15045095

RESUMO

This paper describes the asymmetric version of highly atom-economical alkoxycyclization of 1,6-enynes, using a combination of silver salts with the Pt(II)/(R)-Ph-BINEPINE system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...