Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 55(22): 3282-3285, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30810134

RESUMO

Single and double dearomatization of pyridine rings was observed in MnI complexes with an N2S2 pyridinophane ligand via deprotonation of one or two CH2 arms, respectively. In contrast to other N,S-donor pincer-like systems, the dearomatized (N2S2)Mn species were found to be stable, with the dearomatization being reversible.

2.
Nanomedicine (Lond) ; 11(19): 2603-15, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27618947

RESUMO

Rapid growth and expansion of engineered nanomaterials will occur when the technology can be used safely. Quantum dots have excellent prospects in clinical applications, but the issue of toxicity has not yet been resolved. To enable their medical implementation, the effect on, and mechanisms in, live cells should be clearly known and predicted. A massive amount of experimental data dedicated to nanotoxicity has been accumulated to-date, but it lacks a logical structure. The current challenge is to organize existing knowledge into lucid biological and mathematical models. In our review we aim to describe the interplay of various cell death mechanisms triggered by quantum dots as a consequence of particle parameters and experimental conditions.


Assuntos
Nanoestruturas/toxicidade , Pontos Quânticos/toxicidade , Animais , Apoptose , Autofagia , Morte Celular , Diferenciação Celular , Sobrevivência Celular , Humanos , Nanoestruturas/química , Necrose , Pontos Quânticos/química , Pontos Quânticos/metabolismo
3.
Bioconjug Chem ; 26(10): 2025-37, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26282841

RESUMO

Boron nitride nanotubes (BNNTs) have unique physical properties, of value in biomedical applications; however, their dispersion and functionalization represent a critical challenge in their successful employment as biomaterials. In the present study, we report a process for the efficient disentanglement of BNNTs via a dual surfactant/polydopamine (PD) process. High-resolution transmission electron microscopy (HR-TEM) indicated that individual BNNTs become coated with a uniform PD nanocoating, which significantly enhanced dispersion of BNNTs in aqueous solutions. Furthermore, the cytocompatibility of PD-coated BNNTs was assessed in vitro with cultured human osteoblasts (HOBs) at concentrations of 1, 10, and 30 µg/mL and over three time-points (24, 48, and 72 h). In this study it was demonstrated that PD-functionalized BNNTs become individually localized within the cytoplasm by endosomal escape and that concentrations of up to 30 µg/mL of PD-BNNTs were cytocompatible in HOBs cells following 72 h of exposure.


Assuntos
Materiais Biocompatíveis/farmacologia , Compostos de Boro/química , Indóis/química , Nanotubos/química , Polímeros/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacocinética , Compostos de Boro/farmacocinética , Soluções Tampão , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Humanos , Indóis/farmacocinética , Microscopia Eletrônica de Transmissão , Osteoblastos/efeitos dos fármacos , Espectroscopia Fotoeletrônica , Polímeros/farmacocinética , Espectrometria por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...