Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1184510, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334357

RESUMO

Expression cloning of fully human monoclonal antibodies (hmAbs) is seeing powerful utility in the field of vaccinology, especially for elucidating vaccine-induced B-cell responses and novel vaccine candidate antigen discovery. Precision of the hmAb cloning process relies on efficient isolation of hmAb-producing plasmablasts of interest. Previously, a novel immunoglobulin-capture assay (ICA) was developed, using single protein vaccine antigens, to enhance the pathogen-specific hmAb cloning output. Here, we report a novel modification of this single-antigen ICA using formalin-treated, fluorescently stained whole cell suspensions of the human bacterial invasive pathogens, Streptococcus pneumoniae and Neisseria meningitidis. Sequestration of IgG secreted by individual vaccine antigen-specific plasmablasts was achieved by the formation of an anti-CD45-streptavidin and biotin anti-IgG scaffold. Suspensions containing heterologous pneumococcal and meningococcal strains were then used to enrich for polysaccharide- and protein antigen-specific plasmablasts, respectively, during single cell sorting. Following application of the modified whole-cell ICA (mICA), ~61% (19/31) of anti-pneumococcal polysaccharide hmAbs were cloned compared to 14% (8/59) obtained using standard (non-mICA) methods - representing a ~4.4-fold increase in hmAb cloning precision. A more modest ~1.7-fold difference was obtained for anti-meningococcal vaccine hmAb cloning; ~88% of hmAbs cloned via mICA versus ~53% cloned via the standard method were specific for a meningococcal surface protein. VDJ sequencing revealed that cloned hmAbs reflected an anamnestic response to both pneumococcal and meningococcal vaccines; diversification within hmAb clones occurred by positive selection for replacement mutations. Thus, we have shown successful utilization of whole bacterial cells in the ICA protocol enabling isolation of hmAbs targeting multiple disparate epitopes, thereby increasing the power of approaches such as reverse vaccinology 2.0 (RV 2.0) for bacterial vaccine antigen discovery.


Assuntos
Anticorpos Monoclonais , Vacinas Meningocócicas , Humanos , Suspensões , Vacinas Bacterianas , Vacinas Pneumocócicas , Streptococcus pneumoniae/genética , Antígenos de Bactérias/genética , Clonagem Molecular
2.
Methods Mol Biol ; 2183: 9-18, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32959237

RESUMO

The immunoglobulin capture assay (ICA) enables the enrichment for pathogen-specific plasmablasts from individuals with a confirmed adaptive immune response to vaccination or disseminated infection. Only single recombinant antigens have been used previously as probes in this ICA and it was unclear whether the method was applicable to complex probes such as whole bacterial cells. Here, we describe the enrichment of plasmablasts specific for polysaccharide and protein antigens of both Streptococcus pneumoniae and Neisseria meningitidis using whole formalin-fixed bacterial cells as probes. The modified ICA protocol described here allowed for a pathogen-specific hmAb cloning efficiency of >80%.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Especificidade de Anticorpos/imunologia , Bactérias/imunologia , Imunoensaio/métodos , Sondas Moleculares , Anticorpos Antibacterianos/imunologia , Afinidade de Anticorpos , Formação de Anticorpos/imunologia , Antígenos de Bactérias/imunologia , Interações Hospedeiro-Patógeno , Humanos , Imunoglobulina G/imunologia , Plasmócitos/imunologia , Plasmócitos/metabolismo , Streptococcus pneumoniae/imunologia
3.
J Vis Exp ; (148)2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31305513

RESUMO

Tuberculosis is the leading global cause of infectious disease mortality and roughly a quarter of the world's population is believed to be infected with Mycobacterium tuberculosis. Despite decades of research, many of the mechanisms behind the success of M. tuberculosis as a pathogenic organism remain to be investigated, and the development of safer, more effective antimycobacterial drugs are urgently needed to tackle the rise and spread of drug resistant tuberculosis. However, the progression of tuberculosis research is bottlenecked by traditional mammalian infection models that are expensive, time consuming, and ethically challenging. Previously we established the larvae of the insect Galleria mellonella (greater wax moth) as a novel, reproducible, low cost, high-throughput and ethically acceptable infection model for members of the M. tuberculosis complex. Here we describe the maintenance, preparation, and infection of G. mellonella with bioluminescent Mycobacterium bovis BCG lux. Using this infection model, mycobacterial dose dependent virulence can be observed, and a rapid readout of in vivo mycobacterial burden using bioluminescence measurements is easily achievable and reproducible. Although limitations exist, such as the lack of a fully annotated genome for transcriptomic analysis, ontological analysis against genetically similar insects can be carried out. As a low cost, rapid, and ethically acceptable model for tuberculosis, G. mellonella can be used as a pre-screen to determine drug efficacy and toxicity, and to determine comparative mycobacterial virulence prior to the use of conventional mammalian models. The use of the G. mellonella-mycobacteria model will lead to a reduction in the substantial number of animals currently used in tuberculosis research.


Assuntos
Mariposas/microbiologia , Mycobacterium bovis , Animais , Antibacterianos/farmacologia , Larva/microbiologia , Medições Luminescentes , Mycobacterium tuberculosis/efeitos dos fármacos , Virulência
4.
Front Immunol ; 9: 2315, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30349542

RESUMO

The ongoing, and very serious, threat from antimicrobial resistance necessitates the development and use of preventative measures, predominantly vaccination. Polysaccharide-based vaccines have provided a degree of success in limiting morbidity from disseminated bacterial infections, including those caused by the major human obligate pathogens, Neisseria meningitidis, and Streptococcus pneumoniae. Limitations of these polysaccharide vaccines, such as partial coverage and induced escape leading to persistence of disease, provide a compelling argument for the development of protein vaccines. In this review, we briefly chronicle approaches that have yielded licensed vaccines before highlighting reverse vaccinology 2.0 and its potential application in the discovery of novel bacterial protein vaccine candidates. Technical challenges and research gaps are also discussed.


Assuntos
Vacinas Bacterianas , Vacinologia/tendências , Animais , Infecções Bacterianas/prevenção & controle , Humanos , Vacinologia/métodos
5.
Virulence ; 9(1): 1126-1137, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30067135

RESUMO

Animal models have long been used in tuberculosis research to understand disease pathogenesis and to evaluate novel vaccine candidates and anti-mycobacterial drugs. However, all have limitations and there is no single animal model which mimics all the aspects of mycobacterial pathogenesis seen in humans. Importantly mice, the most commonly used model, do not normally form granulomas, the hallmark of tuberculosis infection. Thus there is an urgent need for the development of new alternative in vivo models. The insect larvae, Galleria mellonella has been increasingly used as a successful, simple, widely available and cost-effective model to study microbial infections. Here we report for the first time that G. mellonella can be used as an infection model for members of the Mycobacterium tuberculosis complex. We demonstrate a dose-response for G. mellonella survival infected with different inocula of bioluminescent Mycobacterium bovis BCG lux, and demonstrate suppression of mycobacterial luminesence over 14 days. Histopathology staining and transmission electron microscopy of infected G. mellonella phagocytic haemocytes show internalization and aggregation of M. bovis BCG lux in granuloma-like structures, and increasing accumulation of lipid bodies within M. bovis BCG lux over time, characteristic of latent tuberculosis infection. Our results demonstrate that G. mellonella can act as a surrogate host to study the pathogenesis of mycobacterial infection and shed light on host-mycobacteria interactions, including latent tuberculosis infection.


Assuntos
Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Mariposas/microbiologia , Mycobacterium bovis/crescimento & desenvolvimento , Animais , Granuloma/microbiologia , Imunidade Inata , Larva/microbiologia , Gotículas Lipídicas/ultraestrutura , Medições Luminescentes , Microscopia Eletrônica de Transmissão , Mycobacterium bovis/isolamento & purificação , Mycobacterium bovis/ultraestrutura , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/fisiologia , Fagócitos/microbiologia , Fagócitos/ultraestrutura , Fatores de Tempo , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...