Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 832: 155040, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35385760

RESUMO

Digestate is the anaerobic digestion by-product of biogas production that can be used as a phosphorus (P) fertilizer. To achieve the efficient utilization of digestate as a P fertilizer and evaluate P availability in digestate-amended soils, it is necessary to assess both available P in different digestates and digestate-amended soils. In this study, Fourier transform mid-infrared photoacoustic spectroscopy (FTIR-PAS) combined with multivariate analysis was applied to predict water-extractable P (WEP) in digestates and plant-available P in digestate-amended soils. The plant-available P was determined by the diffusive gradients in thin films (DGT) technique. 45 digestate samples were collected both from laboratory-scale digesters (26 samples) and operating biogas plants (19 samples) in Denmark for WEP determination. Three soils amended with the collected 19 digestate samples from biogas plants (that results to 57 digestate-amended soil samples in total) were deployed for DGT measurement of plant- available P. The WEP predicting model had a coefficient of determination (R2) of 0.80 and a root mean square error of 0.78 g kg-1 while the plant-available P predicting model exhibited an R2 of 0.70 and a root mean square error of 134.09 µg P L-1. Furthermore, regression coefficients with a significant contribution of the plant-available P predicting model were identified, indicating that FTIR-PAS is capable for correlating spectra information with plant-available P related chemical bonds. In conclusion, FTIR-PAS can be used as a faster and non-destructive alternative for the assessment of both WEP in digestates and plant-available P in digestate-amended soils.


Assuntos
Fertilizantes , Solo , Biocombustíveis/análise , Fertilizantes/análise , Análise de Fourier , Fósforo/química , Plantas , Solo/química , Espectrofotometria Infravermelho
2.
Waste Manag ; 120: 716-724, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199241

RESUMO

Thermal conversion of phosphorus (P)-rich waste materials such as sewage sludge offers several advantages: generation of bioenergy, concentration of plant nutrients and the destruction of organic pollutants. Different thermal processes modify the feedstock's chemical and physical structure in differing ways, which also affects P speciation and plant availability in the residual ashes or carbonization products. This study assessed to which extent the P plant availability of ashes and chars produced from one batch of sewage sludge by incineration, pyrolysis or gasification was affected by particle size management and post-process oxidation. Overall, a smaller particle size of the materials as well as post-process oxidation of non-oxidized materials increased the amount of plant-available P in the soil. In a pot experiment, all the materials increased plant biomass compared with the untreated control, but the pyrolysis chars had a substantially greater fertiliser value than the gasification ashes, while the two tested incineration ashes differed in their P fertilizing effect. P availability in non-oxidized materials was partly related to lower process temperatures and lower levels of crystallinity. However, downstream oxidation simultaneously increased crystallinity and P availability in a pyrolysis char and gasification ashes, resulting in an increase in plant P uptake of up to 60%. Results indicate that the oxidation of poorly soluble Fe-phosphates may contribute to the positive effect on P availability. The results suggest that changes to the design and settings of the thermal conversion processes of sewage sludge offer considerable potential for improving P availability in the residual material.


Assuntos
Fósforo , Esgotos , Fertilizantes , Incineração , Tamanho da Partícula
3.
Chemosphere ; 223: 723-730, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30802838

RESUMO

Globally, more than 30% of soils are poor in phosphorus (P) and the productivity of these soils is severely restricted without the addition of P fertiliser. With future P supplies becoming limited, it is becoming increasingly important to identify ways of optimising the use of waste materials as P fertilisers. One technology that has been promoted extensively in recent years to improve quality of degraded soils is the application of biochar. In this context, char produced from recycled animal bone is of special interest because of its high P content (∼15%). This study investigated how production temperature affects chemical P forms in bone char and the impact on soil P availability in different P-deficient soils. The major P form in dried bone meal was poorly crystalline hydroxyapatite. As the pyrolysis temperature increased to 1050 °C, the hydroxyapatite structure measured with X-ray absorption near edge structure (XANES) spectroscopy persisted. Furthermore, crystallinity increased at temperatures above 750 °C, as revealed by X-ray powder diffraction (XRD). Plant availability was highest for bone char produced between 300 °C and 500 °C in three acidic soils from three continents, and declined rapidly above 750 °C. This strongly indicated that crystallinity of hydroxyapatite limits plant availability at high pyrolysis temperatures. In a high pH soil, all materials resulted in low P availability. As pyrolysis increased the P availability in comparison with dried bone, it was concluded that bone char produced at temperatures between 300 °C and 500 °C has the potential to improve fertility of P-poor, low pH soils.


Assuntos
Apatitas , Carvão Vegetal/farmacologia , Fósforo , Solo/química , Animais , Osso e Ossos/química , Carvão Vegetal/química , Fertilizantes , Temperatura
4.
Biodegradation ; 25(2): 217-25, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23824341

RESUMO

Animal manure is applied to agricultural land in areas of high livestock production. In the present study, we evaluated ageing of atrazine in two topsoils with and without addition of manure and in one subsoil. Ageing was assessed as the bioavailability of atrazine to the atrazine mineralizing bacteria Pseudomonas sp. strain ADP. Throughout an ageing period of 90 days bioavailability was investigated at days 1, 10, 32, 60 and 90, where ~10(8) cells g(-1) of the ADP strain was inoculated to the (14)C-atrazine exposed soil and (14)CO2 was collected over 7 days as a measure of mineralized atrazine. Even though the bioavailable residue decreased in all of the three soils as time proceeded, we found that ageing occurred faster in the topsoils rich in organic carbon than in subsoil. For one topsoil rich in organic carbon content, Simmelkær, we observed a higher degree of ageing when treated with manure. Contrarily, sorption experiments showed less sorption to Simmelkær treated with manure than the untreated soil indicating that sorption processes are not the only mechanisms of ageing. The other topsoil low in organic carbon content, Ringe, showed no significant difference in ageing between the manure-treated and untreated soil. The present study illustrates that not simply the organic carbon content influences adsorption and ageing of atrazine in soil but the origin and composition of organic matter plays an important role.


Assuntos
Atrazina/metabolismo , Herbicidas/metabolismo , Esterco/microbiologia , Pseudomonas/metabolismo , Microbiologia do Solo , Biodegradação Ambiental , Esterco/análise , Solo/química
5.
Environ Sci Technol ; 46(19): 10564-71, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22934573

RESUMO

We are challenged to date to fully understand mechanisms controlling phosphorus (P) mobilization in soil. In this study we evaluated physical properties, chemical reactivity, and potential bioavailability of P mobilized in soil during a leaching event and examined how the amounts and properties of leached P were influenced by surface application of cattle manure. Leaching experiments on manure itself, and on intact soil columns (14.1 cm inner dia., 25 cm height) before and after manure application, were carried out at an irrigation rate of 1 mm h(-1) for 48 h. High concentrations of dissolved reactive P (DRP) were found in manure leachates (up to 32 mg L(-1)), whereas concentrations of P in soil leachates were low both before and after manure application (around 0.04 mg L(-1) before application and up to 0.4 mg L(-1) afterward). This result indicates that the soil retained most of the P added with manure. Manure particles themselves were also largely retained by the soil. Combined physical (centrifugation) and chemical (molybdate reactiveness) fractionation of leached P showed that leachates in the manure treated soils were dominated by dissolved unreactive P (DUP), mainly originating from manure. However, centrifugation only removed a small fraction of total particles from the leachates, indicating that the so-called dissolved fraction may be associated with low density particulate matter. Deployment of Diffusive Gradients in Thin films (DGT) devices in the leachates proved to be a good approach for measuring reactive P in soil leachates. The results indicated that total reactive P (TRP) gave a better estimate of potentially bioavailable P than both total P (TP) and DRP in these experiments.


Assuntos
Esterco , Fósforo/análise , Fósforo/química , Solo , Irrigação Agrícola , Animais , Disponibilidade Biológica , Bovinos , Centrifugação , Fracionamento Químico , Fertilizantes , Material Particulado , Fósforo/farmacocinética
6.
J Environ Qual ; 40(2): 337-43, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21520740

RESUMO

Land application of manure can exacerbate nutrient and contaminant transfers to the aquatic environment. This study examined the effect of injecting a dairy cattle (Bostaurus L.) manure slurry on mobilization and leaching of dissolved, nonreactive slurry components across a range of agricultural soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 microm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam-textured soil. Smaller active flow volumes and higher proportions of preferential flow were observed with increasing soil clay content. Injection of slurry in the loam soil significantly enhanced diffusion of applied bromide into the large fraction of small pores compared with surface application. The resulting physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil texture as an important factor influencing leaching of dissolved, nonreactive slurry components in soils amended with manure slurry.


Assuntos
Agricultura/métodos , Esterco , Solo , Animais , Brometos/análise , Bovinos , Fertilizantes
7.
J Environ Qual ; 40(2): 344-51, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21520741

RESUMO

Managing phosphorus (P) losses in soil leachate folllowing land application of manure is key to curbing eutrophication in many regions. We compared P leaching from columns of variably textured, intact soils (20 cm diam., 20 cm high) subjected to surface application or injection of dairy cattle (Bos taurus L.) manure slurry. Surface application of slurry increased P leaching losses relative to baseline losses, but losses declined with increasing active flow volume. After elution of one pore volume, leaching averaged 0.54 kg P ha(-1) from the loam, 0.38 kg P ha(-1) from the sandy loam, and 0.22 kg P ha(-1) from the loamy sand following surface application. Injection decreased leaching of all P forms compared with surface application by an average of 0.26 kg P ha(-1) in loam and 0.23 kg P ha(-1) in sandy loam, but only by 0.03 kg P ha(-1) in loamy sand. Lower leaching losses were attributed to physical retention of particulate P and dissolved organic P, caused by placing slurry away from active flow paths in the fine-textured soil columns, as well as to chemical retention of dissolved inorganic P, caused by better contact between slurry P and soil adsorption sites. Dissolved organic P was less retained in soil after slurry application than other P forms. On these soils with low to intermediate P status, slurry injection lowered P leaching losses from clay-rich soil, but not from the sandy soils, highlighting the importance of soil texture in manageing P losses following slurry application.


Assuntos
Agricultura/métodos , Esterco , Fósforo/análise , Solo , Animais , Bovinos , Fertilizantes
8.
Environ Pollut ; 158(12): 3670-4, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20850214

RESUMO

Mineralisation of atrazine in soil has been shown to depend on previous exposure of the herbicide. In this study, 24 Danish soils were collected and screened for potential to mineralise atrazine. Six soils were chosen, because they had never been exposed to atrazine, whereas 18 soils were chosen because of their history of application of atrazine or the related compound terbuthylazine. None of the 24 soils revealed a mineralisation potential of more than 4% of the added atrazine within a 60 day timeframe. In an atrazine adapted French soil, we found 60% mineralisation of atrazine in 30 days. Cattle manure was applied in order to boost the microbial activity, and a 2-3% increase in the atrazine mineralisation was found in some of the temperate soils, while in the highly adapted French soil it caused a 5% reduction.


Assuntos
Atrazina/metabolismo , Herbicidas/metabolismo , Poluentes do Solo/química , Solo/química , Biodegradação Ambiental , Exposição Ambiental , Esterco , Microbiologia do Solo , Zea mays/metabolismo
9.
Anal Chem ; 81(4): 1536-42, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19146462

RESUMO

The chemical activity of organic chemicals directs their diffusion and partitioning and is consequently crucial for their transport, distribution, and toxic effects. A silicone membrane equilibrator is introduced for measuring the chemical activity of nonpolar organic chemicals in lipid-rich samples: (I) A 6 m poly(dimethylsiloxane) (PDMS) microtube (300 microm i.d., 640 microm o.d.) was placed in a sample, and a sample-PDMS equilibrium was reached within 10 min for 12 polycyclic aromatic hydrocarbons (PAHs) acting as model compounds. (II) A plug of 100 microL of methanol was pushed through the tube to equilibrate it with the PDMS and thus the sample. (III) This yielded an undiluted methanol extract that was injected into a high-performance liquid chromatograph (HPLC) with multiband fluorescence detection. Quantification limits expressed as unitless chemical activities ranged from 6 x 10(-9) to 5 x 10(-8), and relative standard deviations were from 6% to 19%. Chemical activities of PAHs in mussels from two polluted sites were measured between 10(-7) and 10(-5), and activity coefficients for PAHs in vegetable and fish oils hardly differed between oils. This method can be used for internal exposure measurements, for monitoring product safety/conformity, and process control. The method can also be applied to measure total analyte concentrations in lipid-rich samples and oils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...