Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 625(7993): 79-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093013

RESUMO

Raised peatlands, or bogs, are gently mounded landforms that are composed entirely of organic matter1-4 and store the most carbon per area of any terrestrial ecosystem5. The shapes of bogs are critically important because their domed morphology4,6,7 accounts for much of the carbon that bogs store and determines how they will respond to interventions8,9 to stop greenhouse gas emissions and fires after anthropogenic drainage10-13. However, a general theory to infer the morphology of bogs is still lacking4,6,7. Here we show that an equation based on the processes universal to bogs explains their morphology across biomes, from Alaska, through the tropics, to New Zealand. In contrast to earlier models of bog morphology that attempted to describe only long-term equilibrium shapes4,6,7 and were, therefore, inapplicable to most bogs14-16, our approach makes no such assumption and makes it possible to infer full shapes of bogs from a sample of elevations, such as a single elevation transect. Our findings provide a foundation for quantitative inference about the morphology, hydrology and carbon storage of bogs through Earth's history, as well as a basis for planning natural climate solutions by rewetting damaged bogs around the world.


Assuntos
Sequestro de Carbono , Carbono , Solo , Áreas Alagadas , Altitude , Carbono/metabolismo , Clima , Mapeamento Geográfico , Aquecimento Global/prevenção & controle , Gases de Efeito Estufa/metabolismo , Hidrologia , Incêndios Florestais
2.
Nat Commun ; 9(1): 3640, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194308

RESUMO

Peatlands represent large terrestrial carbon banks. Given that most peat accumulates in boreal regions, where low temperatures and water saturation preserve organic matter, the existence of peat in (sub)tropical regions remains enigmatic. Here we examined peat and plant chemistry across a latitudinal transect from the Arctic to the tropics. Near-surface low-latitude peat has lower carbohydrate and greater aromatic content than near-surface high-latitude peat, creating a reduced oxidation state and resulting recalcitrance. This recalcitrance allows peat to persist in the (sub)tropics despite warm temperatures. Because we observed similar declines in carbohydrate content with depth in high-latitude peat, our data explain recent field-scale deep peat warming experiments in which catotelm (deeper) peat remained stable despite temperature increases up to 9 °C. We suggest that high-latitude deep peat reservoirs may be stabilized in the face of climate change by their ultimately lower carbohydrate and higher aromatic composition, similar to tropical peats.

3.
Glob Chang Biol ; 24(11): 5518-5533, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30007100

RESUMO

The tropical peat swamp forests of South-East Asia are being rapidly converted to agricultural plantations of oil palm and Acacia creating a significant global "hot-spot" for CO2 emissions. However, the effect of this major perturbation has yet to be quantified in terms of global warming potential (GWP) and the Earth's radiative budget. We used a GWP analysis and an impulse-response model of radiative forcing to quantify the climate forcing of this shift from a long-term carbon sink to a net source of greenhouse gases (CO2 and CH4 ). In the GWP analysis, five tropical peatlands were sinks in terms of their CO2 equivalent fluxes while they remained undisturbed. However, their drainage and conversion to oil palm and Acacia plantations produced a dramatic shift to very strong net CO2 -equivalent sources. The induced losses of peat carbon are ~20× greater than the natural CO2 sequestration rates. In contrast, a radiative forcing model indicates that the magnitude of this shift from a net cooling to warming effect is ultimately related to the size of an individual peatland's carbon pool. The continuous accumulation of carbon in pristine tropical peatlands produced a progressively negative radiative forcing (i.e., cooling) that ranged from -2.1 to -6.7 nW/m2 per hectare peatland by 2010 CE, referenced to zero at the time of peat initiation. Peatland conversion to plantations leads to an immediate shift from negative to positive trend in radiative forcing (i.e., warming). If drainage persists, peak warming ranges from +3.3 to +8.7 nW/m2 per hectare of drained peatland. More importantly, this net warming impact on the Earth's radiation budget will persist for centuries to millennia after all the peat has been oxidized to CO2 . This previously unreported and undesirable impact on the Earth's radiative balance provides a scientific rationale for conserving tropical peatlands in their pristine state.


Assuntos
Agricultura , Ciclo do Carbono , Dióxido de Carbono/análise , Aquecimento Global , Áreas Alagadas , Conservação dos Recursos Naturais
4.
Wetl Ecol Manag ; 25(1): 87-104, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32269420

RESUMO

Several wetland classification schemes are now commonly used to describe wetlands in the contiguous United States to meet local, regional, and national regulatory requirements. However, these established systems have proven to be insufficient to meet the needs of land managers in Alaska. The wetlands of this northern region are predominantly peatlands, which are not adequately treated by the nationally-used systems, which have few, if any, peatland classes. A new system was therefore devised to classify wetlands in the rapidly urbanizing Cook Inlet Basin of southcentral Alaska, USA. The Cook Inlet Classification (CIC) is based on seven geomorphic and six hydrologic components that incorporate the environmental gradients responsible for the primary sources of variation in peatland ecosystems. The geomorphic and hydrologic components have the added advantage of being detectable on remote sensing imagery, which facilitates regional mapping across large tracts of inaccessible terrain. Three different quantitative measures were used to evaluate the robustness and performance of the CIC classes relative to that of other commonly used systems in the contiguous United States. The high within-group similarity of the classes identified by the CIC was clearly superior to that of the other systems, demonstrating the need for improved wetland classification systems specifically devised for regions with a high cover of peatlands.

6.
Global Biogeochem Cycles ; 30(11): 1578-1598, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31649419

RESUMO

Northern peatlands are an important source for greenhouse gases but their capacity to produce methane remains uncertain under changing climatic conditions. We therefore analyzed a 43-year time series of pore-water chemistry to determine if long-term shifts in precipitation altered the vertical transport of solutes within a large peat basin in northern Minnesota. These data suggest that rates of methane production can be finely tuned to multi-decadal shifts in precipitation that drive the vertical penetration of labile carbon substrates within the Glacial Lake Agassiz Peatlands. Tritium and cation profiles demonstrate that only the upper meter of these peat deposits was flushed by downwardly moving recharge from 1965 through 1983 during a Transitional Dry-to-Moist Period. However, a shift to a moister climate after 1984 drove surface waters much deeper, largely flushing the pore waters of all bogs and fens to depths of 2 m. Labile carbon compounds were transported downward from the rhizosphere to the basal peat at this time producing a substantial enrichment of methane in Δ14C with respect to the solid-phase peat from 1991 to 2008. These data indicate that labile carbon substrates can fuel deep production zones of methanogenesis that more than doubled in thickness across this large peat basin after 1984. Moreover, the entire peat profile apparently has the capacity to produce methane from labile carbon substrates depending on climate-driven modes of solute transport. Future changes in precipitation may therefore play a central role in determining the source strength of peatlands in the global methane cycle.

7.
Photochem Photobiol ; 91(3): 684-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25772776

RESUMO

In this study, we contrast the fluorescent properties of dissolved organic matter (DOM) in fens and bogs in a Northern Minnesota peatland using excitation emission matrix fluorescence spectroscopy with parallel factor analysis (EEM-PARAFAC). EEM-PARAFAC identified four humic-like components and one protein-like component and the dynamics of each were evaluated based on their distribution with depth as well as across sites differing in hydrology and major biological species. The PARAFAC-EEM experiments were supported by dissolved organic carbon measurements (DOC), optical spectroscopy (UV-Vis), and compositional characterization by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectroscopy (FT-ICR MS). The FT-ICR MS data indicate that metabolism in peatlands reduces the molecular weights of individual components of DOM, and oxygen-rich less aromatic molecules are selectively biodegraded. Our data suggest that different hydrologic and biological conditions within the larger peat ecosystem drive molecular changes in DOM, resulting in distinctly different chemical compositions and unique fluorescent fingerprints. PARAFAC modeling of EEM data coupled with ultrahigh resolution FT-ICR MS has the potential to provide significant molecular-based information on DOM composition that will support efforts to better understand the composition, sources, and diagenetic status of DOM from different terrestrial and aquatic systems.

8.
Proc Natl Acad Sci U S A ; 110(43): 17211-6, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24101489

RESUMO

Aeolian dust is rarely considered an important source for nutrients in large peatlands, which generally develop in moist regions far from the major centers of dust production. As a result, past studies assumed that the Everglades provides a classic example of an originally oligotrophic, P-limited wetland that was subsequently degraded by anthropogenic activities. However, a multiproxy sedimentary record indicates that changes in atmospheric circulation patterns produced an abrupt shift in the hydrology and dust deposition in the Everglades over the past 4,600 y. A wet climatic period with high loadings of aeolian dust prevailed before 2800 cal BP (calibrated years before present) when vegetation typical of a deep slough dominated the principal drainage outlet of the Everglades. This dust was apparently transported from distant source areas, such as the Sahara Desert, by tropical storms according to its elemental chemistry and mineralogy. A drier climatic regime with a steep decline in dustfall persisted after 2800 cal BP maintaining sawgrass vegetation at the coring site as tree islands developed nearby (and pine forests covered adjacent uplands). The marked decline in dustfall was related to corresponding declines in sedimentary phosphorus, organic nitrogen, and organic carbon, suggesting that a close relationship existed between dustfall, primary production, and possibly, vegetation patterning before the 20th century. The climatic change after 2800 cal BP was probably produced by a shift in the Bermuda High to the southeast, shunting tropical storms to the south of Florida into the Gulf of Mexico.


Assuntos
Clima , Tempestades Ciclônicas , Poeira , Áreas Alagadas , Mudança Climática , Ecossistema , Florida , Geografia , Sedimentos Geológicos , Modelos Teóricos , Fatores de Tempo , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...