Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 12(4)2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30781743

RESUMO

The production of Portland cement accounts for approximately 7% of global anthropogenic CO2 emissions. Carbon CAPture and CONversion (CAPCON) technology under development by the authors allows for new methods to be developed to offset these emissions. Carbon-negative Precipitated Calcium Carbonate (PCC), produced from CO2 emissions, can be used as a means of offsetting the carbon footprint of cement production while potentially providing benefits to cement hydration, workability, durability and strength. In this paper, we present preliminary test results obtained for the mechanical and chemical properties of a new class of PCC blended Portland cements. These initial findings have shown that these cements behave differently from commonly used Portland cement and Portland limestone cement, which have been well documented to improve workability and the rate of hydration. The strength of blended Portland cements incorporating carbon-negative PCC Admixture (PCC-A) has been found to exceed that of the reference baseline-Ordinary Portland Cement (OPC). The reduction of the cement clinker factor, when using carbon-negative PCC-A, and the observed increase in compressive strength and the associated reduction in member size can reduce the carbon footprint of blended Portland cements by more than 25%.

2.
J Am Ceram Soc ; 100(7): 2746-2773, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28966345

RESUMO

In a book published in 1906, Richard Meade outlined the history of portland cement up to that point1. Since then there has been great progress in portland cement-based construction materials technologies brought about by advances in the materials science of composites and the development of chemical additives (admixtures) for applications. The resulting functionalities, together with its economy and the sheer abundance of its raw materials, have elevated ordinary portland cement (OPC) concrete to the status of most used synthetic material on Earth. While the 20th century was characterized by the emergence of computer technology, computational science and engineering, and instrumental analysis, the fundamental composition of portland cement has remained surprisingly constant. And, although our understanding of ordinary portland cement (OPC) chemistry has grown tremendously, the intermediate steps in hydration and the nature of calcium silicate hydrate (C-S-H), the major product of OPC hydration, remain clouded in uncertainty. Nonetheless, the century also witnessed great advances in the materials technology of cement despite the uncertain understanding of its most fundamental components. Unfortunately, OPC also has a tremendous consumption-based environmental impact, and concrete made from OPC has a poor strength-to-weight ratio. If these challenges are not addressed, the dominance of OPC could wane over the next 100 years. With this in mind, this paper envisions what the 21st century holds in store for OPC in terms of the driving forces that will shape our continued use of this material. Will a new material replace OPC, and concrete as we know it today, as the preeminent infrastructure construction material?

3.
J Magn Reson ; 176(2): 140-50, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16002306

RESUMO

The development of a 3-D, multi-nuclear continuous wave NMR imaging (CW-NMRI) system is described and its imaging capability is demonstrated on a range of materials exhibiting extremely short T(2) relaxation values. A variety of radiofrequency resonators were constructed and incorporated into a new gradient and field offset coil assembly, while the overall system design was modified to minimise microphonic noise which was present in an earlier prototype system. The chemically combined (27)Al in a high temperature refractory cement was imaged, and the CW-NMRI system was found to be sensitive to small differences in (27)Al content in these samples. The penetration of (23)Na in salt water into samples of ordinary Portland cement (OPC) was investigated, with enhanced uptake observed for samples with larger pore size distributions. The solid (13)C component in a carbonated cement sample was also imaged, as were the (7)Li nuclei in a sample of powdered Li(2)CO(3). A spatial resolution of 1mm was measured in an image of a rigid polymeric material exhibiting a principal T( *)(2) value of 16.3 micros. Finally, a high-resolution 3-D image of this rigid polymer is presented.


Assuntos
Algoritmos , Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Imageamento Tridimensional/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Espectroscopia de Ressonância Magnética/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...