Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38502869

RESUMO

Disturbances cause rapid changes to forests, with different disturbance types and severities creating unique ecosystem trajectories that can impact the underlying soil microbiome. Pile burning-the combustion of logging residue on the forest floor-is a common fuel reduction practice that can have impacts on forest soils analogous to those following high-severity wildfire. Further, pile burning following clear-cut harvesting can create persistent openings dominated by nonwoody plants surrounded by dense regenerating conifer forest. A paired 60-year chronosequence of burn scar openings and surrounding regenerating forest after clear-cut harvesting provides a unique opportunity to assess whether belowground microbial processes mirror aboveground vegetation during disturbance-induced ecosystem shifts. Soil ectomycorrhizal fungal diversity was reduced the first decade after pile burning, which could explain poor tree seedling establishment and subsequent persistence of herbaceous species within the openings. Fine-scale changes in the soil microbiome mirrored aboveground shifts in vegetation, with short-term changes to microbial carbon cycling functions resembling a postfire microbiome (e.g. enrichment of aromatic degradation genes) and respiration in burn scars decoupled from substrate quantity and quality. Broadly, however, soil microbiome composition and function within burn scar soils converged with that of the surrounding regenerating forest six decades after the disturbances, indicating potential microbial resilience that was disconnected from aboveground vegetation shifts. This work begins to unravel the belowground microbial processes that underlie disturbance-induced ecosystem changes, which are increasing in frequency tied to climate change.


Assuntos
Microbiota , Ecossistema , Retroalimentação , Florestas , Solo/química
2.
Ecology ; 104(2): e3930, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36451599

RESUMO

Climate change is increasing the variability of precipitation, altering the frequency of soil drying-wetting events and the distribution of seasonal precipitation. These changes in precipitation can alter nitrogen (N) cycling and stimulate nitric oxide (NO) emissions (an air pollutant at high concentrations), which may vary according to legacies of past precipitation and represent a pathway for ecosystem N loss. To identify whether precipitation legacies affect NO emissions, we excluded or added precipitation during the winter growing season in a Pinyon-Juniper dryland and measured in situ NO emissions following experimental wetting. We found that the legacy of both excluding and adding winter precipitation increased NO emissions early in the following summer; cumulative NO emissions from the winter precipitation exclusion plots (2750 ± 972 µg N-NO m-2 ) and winter water addition plots (2449 ± 408 µg N-NO m-2 ) were higher than control plots (1506 ± 397 µg N-NO m-2 ). The increase in NO emissions with previous precipitation exclusion was associated with inorganic N accumulation, while the increase in NO emissions with previous water addition was associated with an upward trend in microbial biomass. Precipitation legacies can accelerate soil NO emissions and may amplify ecosystem N loss in response to more variable precipitation.


Assuntos
Ecossistema , Juniperus , Nitrogênio/análise , Óxido Nítrico , Juniperus/metabolismo , Solo , Água
3.
Mol Ecol ; 32(7): 1685-1707, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36579900

RESUMO

The rise in wildfire frequency and severity across the globe has increased interest in secondary succession. However, despite the role of soil microbial communities in controlling biogeochemical cycling and their role in the regeneration of post-fire vegetation, the lack of measurements immediately post-fire and at high temporal resolution has limited understanding of microbial secondary succession. To fill this knowledge gap, we sampled soils at 17, 25, 34, 67, 95, 131, 187, 286, and 376 days after a southern California wildfire in fire-adapted chaparral shrublands. We assessed bacterial and fungal biomass with qPCR of 16S and 18S and richness and composition with Illumina MiSeq sequencing of 16S and ITS2 amplicons. Fire severely reduced bacterial biomass by 47%, bacterial richness by 46%, fungal biomass by 86%, and fungal richness by 68%. The burned bacterial and fungal communities experienced rapid succession, with 5-6 compositional turnover periods. Analogous to plants, turnover was driven by "fire-loving" pyrophilous microbes, many of which have been previously found in forests worldwide and changed markedly in abundance over time. Fungal secondary succession was initiated by the Basidiomycete yeast Geminibasidium, which traded off against the filamentous Ascomycetes Pyronema, Aspergillus, and Penicillium. For bacteria, the Proteobacteria Massilia dominated all year, but the Firmicute Bacillus and Proteobacteria Noviherbaspirillum increased in abundance over time. Our high-resolution temporal sampling allowed us to capture post-fire microbial secondary successional dynamics and suggest that putative tradeoffs in thermotolerance, colonization, and competition among dominant pyrophilous microbes control microbial succession with possible implications for ecosystem function.


Assuntos
Ascomicetos , Incêndios , Microbiota , Incêndios Florestais , Ecossistema , Florestas , Bactérias/genética , Solo/química , Microbiota/genética , Microbiologia do Solo
4.
Mycologia ; 114(2): 215-241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35344467

RESUMO

Fires occur in most terrestrial ecosystems where they drive changes in the traits, composition, and diversity of fungal communities. Fires range from rare, stand-replacing wildfires to frequent, prescribed fires used to mimic natural fire regimes. Fire regime factors, including burn severity, fire intensity, and timing, vary widely and likely determine how fungi respond to fires. Despite the importance of fungi to post-fire plant communities and ecosystem functioning, attempts to identify common fungal responses and their major drivers are lacking. This synthesis addresses this knowledge gap and ranges from fire adaptations of specific fungi to succession and assembly fungal communities as they respond to spatially heterogenous burning within the landscape. Fires impact fungi directly and indirectly through their effects on fungal survival, substrate and habitat modifications, changes in environmental conditions, and/or physiological responses of the hosts with which fungi interact. Some specific pyrophilous, or "fire-loving," fungi often appear after fire. Our synthesis explores whether such taxa can be considered cosmopolitan, and whether they are truly fire-adapted or simply opportunists adapted to rapidly occupy substrates and habitats made available by fires. We also discuss the possible inoculum sources of post-fire fungi and explore existing conceptual models and ecological frameworks that may be useful in generalizing fungal fire responses. We conclude with identifying research gaps and areas that may best transform the current knowledge and understanding of fungal responses to fire.


Assuntos
Incêndios , Micobioma , Incêndios Florestais , Ecossistema , Plantas
5.
Mol Ecol ; 31(8): 2475-2493, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35152495

RESUMO

Mega-fires of unprecedented size, intensity and socio-economic impacts have surged globally due to climate change, fire suppression and development. Soil microbiomes are critical for post-fire plant regeneration and nutrient cycling, yet how mega-fires impact the soil microbiome remains unclear. We had a serendipitous opportunity to obtain pre- and post-fire soils from the same sampling locations after the 2016 Soberanes mega-fire burned with high severity throughout several of our established redwood-tanoak plots. This makes our study the first to examine microbial fire response in redwood-tanoak forests. We re-sampled soils immediately post-fire from two burned plots and one unburned plot to elucidate the effect of mega-fire on soil microbiomes. We used Illumina MiSeq sequencing of 16S and ITS1 sequences to determine that bacterial and fungal richness were reduced by 38%-70% in burned plots, with richness unchanged in the unburned plot. Fire altered composition by 27% for bacteria and 24% for fungi, whereas the unburned plots experienced no change in fungal and negligible change in bacterial composition. Pyrophilous taxa that responded positively to fire were phylogenetically conserved, suggesting shared evolutionary traits. For bacteria, fire selected for increased Firmicutes and Actinobacteria. For fungi, fire selected for the Ascomycota classes Pezizomycetes and Eurotiomycetes and for a Basidiomycota class of heat-resistant Geminibasidiomycete yeasts. We build from Grime's competitor-stress tolerator-ruderal (C-S-R) framework and its recent microbial applications to show how our results might fit into a trait-based conceptual model to help predict generalizable microbial responses to fire.


Assuntos
Ascomicetos , Incêndios , Sequoia , Bactérias/genética , Ecossistema , Florestas , Solo
6.
Front Microbiol ; 12: 655987, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995318

RESUMO

Fungi are important decomposers in terrestrial ecosystems, so their responses to climate change might influence carbon (C) and nitrogen (N) dynamics. We investigated whether growth and activity of fungi under drought conditions were structured by trade-offs among traits in 15 fungal isolates from a Mediterranean Southern California grassland. We inoculated fungi onto sterilized litter that was incubated at three moisture levels (4, 27, and 50% water holding capacity, WHC). For each isolate, we characterized traits that described three potential lifestyles within the newly proposed "YAS" framework: growth yield, resource acquisition, and stress tolerance. Specifically, we measured fungal hyphal length per unit litter decomposition for growth yield; the potential activities of the extracellular enzymes cellobiohydrolase (CBH), ß -glucosidase (BG), ß -xylosidase (BX), and N-acetyl- ß - D -glucosaminidase (NAG) for resource acquisition; and ability to grow in drought vs. higher moisture levels for drought stress tolerance. Although, we had hypothesized that evolutionary and physiological trade-offs would elicit negative relationships among traits, we found no supporting evidence for this hypothesis. Across isolates, growth yield, drought stress tolerance, and extracellular enzyme activities were not significantly related to each other. Thus, it is possible that drought-induced shifts in fungal community composition may not necessarily lead to changes in fungal biomass or decomposer ability in this arid grassland.

8.
Microorganisms ; 9(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499315

RESUMO

Deserts cover a significant proportion of the Earth's surface and continue to expand as a consequence of climate change. Mutualistic arbuscular mycorrhizal (AM) fungi are functionally important plant root symbionts, and may be particularly important in drought stressed systems such as deserts. Here we provide a first molecular characterization of the AM fungi occurring in several desert ecosystems worldwide. We sequenced AM fungal DNA from soil samples collected from deserts in six different regions of the globe using the primer pair WANDA-AML2 with Illumina MiSeq. We recorded altogether 50 AM fungal phylotypes. Glomeraceae was the most common family, while Claroideoglomeraceae, Diversisporaceae and Acaulosporaceae were represented with lower frequency and abundance. The most diverse site, with 35 virtual taxa (VT), was in the Israeli Negev desert. Sites representing harsh conditions yielded relatively few reads and low richness estimates, for example, a Saudi Arabian desert site where only three Diversispora VT were recorded. The AM fungal taxa recorded in the desert soils are mostly geographically and ecologically widespread. However, in four sites out of six, communities comprised more desert-affiliated taxa (according to the MaarjAM database) than expected at random. AM fungal VT present in samples were phylogenetically clustered compared with the global taxon pool, suggesting that nonrandom assembly processes, notably habitat filtering, may have shaped desert fungal assemblages.

9.
New Phytol ; 231(2): 763-776, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33507570

RESUMO

The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.


Assuntos
Micorrizas , Ecossistema , Fungos , Concentração de Íons de Hidrogênio , Filogenia , Solo , Microbiologia do Solo , Temperatura
10.
Mycorrhiza ; 31(2): 203-216, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33475801

RESUMO

Fire effects on ecosystems range from destruction of aboveground vegetation to direct and indirect effects on belowground microorganisms. Although variation in such effects is expected to be related to fire severity, another potentially important and poorly understood factor is the effect of fire seasonality on soil microorganisms. We carried out a large-scale field experiment examining the effects of spring (early-dry season) versus autumn (late-dry- season) burns on the community composition of soil fungi in a typical Mediterranean woodland. Although the intensity and severity of our prescribed burns were largely consistent between the two burning seasons, we detected differential fire season effects on the composition of the soil fungal community, driven by changes in the saprotrophic fungal guild. The community composition of ectomycorrhizal fungi, assayed both in pine seedling bioassays and from soil sequencing, appeared to be resilient to the variation inflicted by seasonal fires. Since changes in the soil saprotrophic fungal community can directly influence carbon emission and decomposition rates, we suggest that regardless of their intensity and severity, seasonal fires may cause changes in ecosystem functioning.


Assuntos
Queimaduras , Incêndios , Micorrizas , Ecossistema , Florestas , Humanos , Estações do Ano , Solo
11.
ISME Commun ; 1(1): 43, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36740602

RESUMO

Phenotypic plasticity of traits is commonly measured in plants to improve understanding of organismal and ecosystem responses to climate change but is far less studied for microbes. Specifically, decomposer fungi are thought to display high levels of phenotypic plasticity and their functions have important implications for ecosystem dynamics. Assessing the phenotypic plasticity of fungal traits may therefore be important for predicting fungal community response to climate change. Here, we assess the phenotypic plasticity of 15 fungal isolates (12 species) from a Southern California grassland. Fungi were incubated on litter at five moisture levels (ranging from 4-50% water holding capacity) and at five temperatures (ranging from 4-36 °C). After incubation, fungal biomass and activities of four extracellular enzymes (cellobiohydrolase (CBH), ß-glucosidase (BG), ß-xylosidase (BX), and N-acetyl-ß-D-glucosaminidase (NAG)) were measured. We used response surface methodology to determine how fungal phenotypic plasticity differs across the moisture-temperature gradient. We hypothesized that fungal biomass and extracellular enzyme activities would vary with moisture and temperature and that the shape of the response surface would vary between fungal isolates. We further hypothesized that more closely related fungi would show more similar response surfaces across the moisture-temperature gradient. In support of our hypotheses, we found that plasticity differed between fungi along the temperature gradient for fungal biomass and for all the extracellular enzyme activities. Plasticity also differed between fungi along the moisture gradient for BG activity. These differences appear to be caused by variation mainly at the moisture and temperature extremes. We also found that more closely related fungi had more similar extracellular enzymes activities at the highest temperature. Altogether, this evidence suggests that with global warming, fungal biodiversity may become increasingly important as functional traits tend to diverge along phylogenetic lines at higher temperatures.

12.
Ecol Evol ; 10(13): 6593-6609, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724535

RESUMO

Giant sequoia (Sequoiadendron giganteum) is an iconic conifer that lives in relict populations on the western slopes of the California Sierra Nevada. In these settings, it is unusual among the dominant trees in that it associates with arbuscular mycorrhizal fungi rather than ectomycorrhizal fungi. However, it is unclear whether differences in microbial associations extend more broadly to nonmycorrhizal components of the soil microbial community. To address this question, we used next-generation amplicon sequencing to characterize bacterial/archaeal and fungal microbiomes in bulk soil (0-5 cm) beneath giant sequoia and co-occurring sugar pine (Pinus lambertiana) individuals. We did this across two groves with distinct parent material in Yosemite National Park, USA. We found tree-associated differences were apparent despite a strong grove effect. Bacterial/archaeal richness was greater beneath giant sequoia than sugar pine, with a core community double the size. The tree species also harbored compositionally distinct fungal communities. This pattern depended on grove but was associated with a consistently elevated relative abundance of Hygrocybe species beneath giant sequoia. Compositional differences between host trees correlated with soil pH and soil moisture. We conclude that the effects of giant sequoia extend beyond mycorrhizal mutualists to include the broader community and that some but not all host tree differences are grove-dependent.

13.
PLoS One ; 15(3): e0222691, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32130222

RESUMO

We have designed a pyrocosm to enable fine-scale dissection of post-fire soil microbial communities. Using it we show that the peak soil temperature achieved at a given depth occurs hours after the fire is out, lingers near this peak for a significant time, and is accurately predicted by soil depth and the mass of charcoal burned. Flash fuels that produce no large coals were found to have a negligible soil heating effect. Coupling this system with Illumina MiSeq sequencing of the control and post-fire soil we show that we can stimulate a rapid, massive response by Pyronema, a well-known genus of pyrophilous fungus, within two weeks of a test fire. This specific stimulation occurs in a background of many other fungal taxa that do not change noticeably with the fire, although there is an overall reduction in richness and evenness. We introduce a thermo-chemical gradient model to summarize the way that heat, soil depth and altered soil chemistry interact to create a predictable, depth-structured habitat for microbes in post-fire soils. Coupling this model with the temperature relationships found in the pyrocosms, we predict that the width of a survivable "goldilocks zone", which achieves temperatures that select for postfire-adapted microbes, will stay relatively constant across a range of fuel loads. In addition we predict that a larger necromass zone, containing labile carbon and nutrients from recently heat-killed organisms, will increase in size rapidly with addition of fuel and then remain nearly constant in size over a broad range of fuel loads. The simplicity of this experimental system, coupled with the availability of a set of sequenced, assembled and annotated genomes of pyrophilous fungi, offers a powerful tool for dissecting the ecology of post-fire microbial communities.


Assuntos
Ascomicetos/genética , Incêndios , Microbiota/fisiologia , Microbiologia do Solo , Adaptação Fisiológica/genética , Carbono , Carvão Vegetal , Florestas , Genoma Fúngico , Temperatura Alta , Solo/química
14.
Proc Natl Acad Sci U S A ; 115(47): 11994-11999, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30397146

RESUMO

Bacteria and fungi drive decomposition, a fundamental process in the carbon cycle, yet the importance of microbial community composition for decomposition remains elusive. Here, we used an 18-month reciprocal transplant experiment along a climate gradient in Southern California to disentangle the effects of the microbial community versus the environment on decomposition. Specifically, we tested whether the decomposition response to climate change depends on the microbial community. We inoculated microbial decomposers from each site onto a common, irradiated leaf litter within "microbial cages" that prevent microbial exchange with the environment. We characterized fungal and bacterial composition and abundance over time and investigated the functional consequences through litter mass loss and chemistry. After 12 months, microbial communities altered both decomposition rate and litter chemistry. Further, the functional measurements depended on an interaction between the community and its climate in a manner not predicted by current theory. Moreover, microbial ecologists have traditionally considered fungi to be the primary agents of decomposition and for bacteria to play a minor role. Our results indicate that not only does climate change and transplantation have differential legacy effects among bacteria and fungi, but also that bacterial communities might be less functionally redundant than fungi with regards to decomposition. Thus, it may be time to reevaluate both the role of microbial community composition in its decomposition response to climate and the relative roles of bacterial and fungal communities in decomposition.


Assuntos
Ciclo do Carbono/fisiologia , Microbiota/fisiologia , Altitude , Bactérias/metabolismo , California , Mudança Climática , Ecossistema , Fungos/metabolismo , Folhas de Planta/química , Folhas de Planta/microbiologia
15.
mSphere ; 3(4)2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021874

RESUMO

Recent discussion focuses on the best method for delineating microbial taxa, based on either exact sequence variants (ESVs) or traditional operational taxonomic units (OTUs) of marker gene sequences. We sought to test if the binning approach (ESVs versus 97% OTUs) affected the ecological conclusions of a large field study. The data set included sequences targeting all bacteria (16S rRNA) and fungi (internal transcribed spacer [ITS]), across multiple environments diverging markedly in abiotic conditions, over three collection times. Despite quantitative differences in microbial richness, we found that all α and ß diversity metrics were highly positively correlated (r > 0.90) between samples analyzed with both approaches. Moreover, the community composition of the dominant taxa did not vary between approaches. Consequently, statistical inferences were nearly indistinguishable. Furthermore, ESVs only moderately increased the genetic resolution of fungal and bacterial diversity (1.3 and 2.1 times OTU richness, respectively). We conclude that for broadscale (e.g., all bacteria or all fungi) α and ß diversity analyses, ESV or OTU methods will often reveal similar ecological results. Thus, while there are good reasons to employ ESVs, we need not question the validity of results based on OTUs.IMPORTANCE Microbial ecologists have made exceptional improvements in our understanding of microbiomes in the last decade due to breakthroughs in sequencing technologies. These advances have wide-ranging implications for fields ranging from agriculture to human health. Due to limitations in databases, the majority of microbial ecology studies use a binning approach to approximate taxonomy based on DNA sequence similarity. There remains extensive debate on the best way to bin and approximate this taxonomy. Here we examine two popular approaches using a large field-based data set examining both bacteria and fungi and conclude that there are not major differences in the ecological outcomes. Thus, it appears that standard microbial community analyses are not overly sensitive to the particulars of binning approaches.


Assuntos
Bactérias/classificação , Bactérias/genética , Biota , Microbiologia Ambiental , Fungos/classificação , Fungos/genética , Metagenômica/métodos , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
MycoKeys ; (28): 65-82, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559822

RESUMO

Recent DNA-based studies have shown that the built environment is surprisingly rich in fungi. These indoor fungi - whether transient visitors or more persistent residents - may hold clues to the rising levels of human allergies and other medical and building-related health problems observed globally. The taxonomic identity of these fungi is crucial in such pursuits. Molecular identification of the built mycobiome is no trivial undertaking, however, given the large number of unidentified, misidentified, and technically compromised fungal sequences in public sequence databases. In addition, the sequence metadata required to make informed taxonomic decisions - such as country and host/substrate of collection - are often lacking even from reference and ex-type sequences. Here we report on a taxonomic annotation workshop (April 10-11, 2017) organized at the James Hutton Institute/University of Aberdeen (UK) to facilitate reproducible studies of the built mycobiome. The 32 participants went through public fungal ITS barcode sequences related to the built mycobiome for taxonomic and nomenclatural correctness, technical quality, and metadata availability. A total of 19,508 changes - including 4,783 name changes, 14,121 metadata annotations, and the removal of 99 technically compromised sequences - were implemented in the UNITE database for molecular identification of fungi (https://unite.ut.ee/) and shared with a range of other databases and downstream resources. Among the genera that saw the largest number of changes were Penicillium, Talaromyces, Cladosporium, Acremonium, and Alternaria, all of them of significant importance in both culture-based and culture-independent surveys of the built environment.

17.
Mol Ecol ; 26(24): 6960-6973, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29113014

RESUMO

Whether niche processes, like environmental filtering, or neutral processes, like dispersal limitation, are the primary forces driving community assembly is a central question in ecology. Here, we use a natural experimental system of isolated tree "islands" to test whether environment or geography primarily structures fungal community composition at fine spatial scales. This system consists of isolated pairs of two distantly related, congeneric pine trees established at varying distances from each other and the forest edge, allowing us to disentangle the effects of geographic distance vs. host and edaphic environment on associated fungal communities. We identified fungal community composition with Illumina sequencing of ITS amplicons, measured all relevant environmental parameters for each tree-including tree age, size and soil chemistry-and calculated geographic distances from each tree to all others and to the nearest forest edge. We applied generalized dissimilarity modelling to test whether total and ectomycorrhizal fungal (EMF) communities were primarily structured by geographic or environmental filtering. Our results provide strong evidence that as in many other organisms, niche and neutral processes both contribute significantly to turnover in community composition in fungi, but environmental filtering plays the dominant role in structuring both free-living and symbiotic fungal communities at fine spatial scales. In our study system, we found pH and organic matter primarily drive environmental filtering in total soil fungal communities and that pH and cation exchange capacity-and, surprisingly, not host species-were the largest factors affecting EMF community composition. These findings support an emerging paradigm that pH may play a central role in the assembly of all soil-mediated systems.


Assuntos
Micorrizas/classificação , Pinus/microbiologia , Microbiologia do Solo , Solo/química , California , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Florestas , Concentração de Íons de Hidrogênio , Modelos Biológicos , Simbiose
18.
Ecol Lett ; 20(9): 1192-1202, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28797140

RESUMO

The effects of spatial heterogeneity in negative biological interactions on individual performance and species diversity have been studied extensively. However, little is known about the respective effects involving positive biological interactions, including the symbiosis between plants and ectomycorrhizal (EM) fungi. Using a greenhouse bioassay, we explored how spatial heterogeneity of natural soil inoculum influences the performance of pine seedlings and composition of their root-associated EM fungi. When the inoculum was homogenously distributed, a single EM fungal taxon dominated the roots of most pine seedlings, reducing the diversity of EM fungi at the treatment level, while substantially improving pine seedling performance. In contrast, clumped inoculum allowed the proliferation of several different EM fungi, increasing the overall EM fungal diversity. The most dominant EM fungal taxon detected in the homogeneous treatment was also a highly beneficial mutualist, implying that the trade-off between competitive ability and mutualistic capacity does not always exist.


Assuntos
Micorrizas , Raízes de Plantas , Simbiose , Biodiversidade , Fungos , Pinus , Plântula
19.
Mycologia ; 109(1): 115-127, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28402791

RESUMO

The corticioid fungi are commonly encountered, highly diverse, ecologically important, and understudied. We collected specimens in 60 pine and spruce forests across North America to survey corticioid fungal frequency and distribution and to compile an internal transcribed spacer (ITS) database for the group. Sanger sequences from the ITS region of vouchered specimens were compared with sequences on GenBank and UNITE, and with high-throughput sequence data from soil and roots taken at the same sites. Out of 425 high-quality Sanger sequences from vouchered specimens, we recovered 223 distinct operational taxonomic units (OTUs), the majority of which could not be assigned to species by matching to the BLAST database. Corticioid fungi were found to be hyperdiverse, as supported by the observations that nearly two-thirds of our OTUs were represented by single collections and species estimator curves showed steep slopes with no plateaus. We estimate that 14.8-24.7% of our voucher-based OTUs are likely to be ectomycorrhizal (EM). Corticioid fungi recovered from the soil formed a different community assemblage, with EM taxa accounting for 40.5-58.6% of OTUs. We compared basidioma sequences with EM root tips from our data, GenBank, or UNITE, and with this approach, we reiterate existing speculations that Trechispora stellulata is EM. We found that corticioid fungi have a significant distance-decay pattern, adding to the literature supporting fungi as having geographically structured communities. This study provides a first view of the diversity of this important group across North American pine forests, but much of the biology and taxonomy of these diverse, important, and widespread fungi remains unknown.


Assuntos
Biodiversidade , Florestas , Fungos/classificação , Fungos/isolamento & purificação , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Fungos/genética , América do Norte , Filogenia , Picea/microbiologia , Pinus/microbiologia , Raízes de Plantas/microbiologia , Análise de Sequência de DNA , Microbiologia do Solo
20.
ISME J ; 10(5): 1228-39, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26473720

RESUMO

After severe wildfires, pine recovery depends on ectomycorrhizal (ECM) fungal spores surviving and serving as partners for regenerating forest trees. We took advantage of a large, severe natural forest fire that burned our long-term study plots to test the response of ECM fungi to fire. We sampled the ECM spore bank using pine seedling bioassays and high-throughput sequencing before and after the California Rim Fire. We found that ECM spore bank fungi survived the fire and dominated the colonization of in situ and bioassay seedlings, but there were specific fire adapted fungi such as Rhizopogon olivaceotinctus that increased in abundance after the fire. The frequency of ECM fungal species colonizing pre-fire bioassay seedlings, post-fire bioassay seedlings and in situ seedlings were strongly positively correlated. However, fire reduced the ECM spore bank richness by eliminating some of the rare species, and the density of the spore bank was reduced as evidenced by a larger number of soil samples that yielded uncolonized seedlings. Our results show that although there is a reduction in ECM inoculum, the ECM spore bank community largely remains intact, even after a high-intensity fire. We used advanced techniques for data quality control with Illumina and found consistent results among varying methods. Furthermore, simple greenhouse bioassays can be used to determine which fungi will colonize after fires. Similar to plant seed banks, a specific suite of ruderal, spore bank fungi take advantage of open niche space after fires.


Assuntos
Incêndios , Micorrizas/fisiologia , Pinus/microbiologia , Esporos Fúngicos , Basidiomycota , Bioensaio , California , Biologia Computacional , Ecologia , Florestas , Plântula/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...