Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684776

RESUMO

Flow control of liquid metals based on the actual flow condition is important in many metallurgical applications. For instance, the liquid steel flow in the mould of a continuous caster strongly influences the product quality. The flow can be modified by an electromagnetic brake (EMBr). However, due to the lack of appropriate flow measurement techniques, the control of those actuators is usually not based on the actual flow condition. This article describes the recent developments of the Contactless Inductive Flow Tomography (CIFT) towards a real-time monitoring system, which can be used as an input to the control loop for an EMBr. CIFT relies on measuring the flow-induced perturbation of an applied magnetic field and the solution of an underlying linear inverse problem. In order to implement the CIFT reconstructions in combination with EMBr, two issues have to be solved: (i) compensation of the effects of the change in EMBr strength on the CIFT measurement system and (ii) a real-time solution of the inverse problem. We present solutions of both problems for a model of a continuous caster with a ruler-type EMBr. The EMBr introduces offsets of the measured magnetic field that are several orders of magnitude larger than the very flow-induced perturbations. The offset stems from the ferromagnetic hysteresis exhibited by the ferrous parts of the EMBr in the proximity of the measurement coils. Compensation of the offset was successfully achieved by implementing a numerical model of hysteresis to predict the offset. Real-time reconstruction was achieved by precalculating the computationally heavy matrix inverses for a predefined set of regularization parameters and choosing the optimal one in every measurement frame. Finally, we show that this approach does not hinder the reconstruction quality.

2.
Sensors (Basel) ; 22(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35336364

RESUMO

More than 96% of steel in the world is produced via the method of continuous casting. The flow condition in the mould, where the initial solidification occurs, has a significant impact on the quality of steel products. It is important to have timely, and perhaps automated, control of the flow during casting. This work presents a new concept of using contactless inductive flow tomography (CIFT) as a sensor for a novel controller, which alters the strength of an electromagnetic brake (EMBr) of ruler type based on the reconstructed flow structure in the mould. The method was developed for the small-scale Liquid Metal Model for Continuous Casting (mini-LIMMCAST) facility available at the Helmholtz-Zentrum Dresden-Rossendorf. As an example of an undesired flow condition, clogging of the submerged entry nozzle (SEN) was modelled by partly closing one of the side ports of the SEN; in combination with an active EMBr, the jet penetrates deeper into the mould than when the EMBr is switched off. Corresponding flow patterns are detected by extracting the impingement position of the jets at the narrow faces of the mould from the CIFT reconstruction. The controller is designed to detect to undesired flow condition and switch off the EMBr. The temporal resolution of CIFT is 0.5 s.

3.
Sensors (Basel) ; 20(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271942

RESUMO

The flow structure in the mold of a continuous steel caster has a significant impact on the quality of the final product. Conventional sensors used in industry are limited to measuring single variables such as the mold level. These measurements give very indirect information about the flow structure. For this reason, designing control loops to optimize the flow is a huge challenge. A solution for this is to apply non-invasive sensors such as tomographic sensors that are able to visualize the flow structure in the opaque liquid metal and obtain information about the flow structure in the mold. In this paper, ultrasound Doppler velocimetry (UDV) is used to obtain key features of the flow. The preprocessing of the UDV data and feature extraction techniques are described in detail. The extracted flow features are used as the basis for real time feedback control. The model predictive control (MPC) technique is applied, and the results show that the controller is able to achieve optimum flow structures in the mold. The two main actuators that are used by the controller are the electromagnetic brake and the stopper rod. The experiments included in this study were obtained from a laboratory model of a continuous caster located at the Helmholtz-Zentrum Dresden Rossendorf (HZDR).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...