Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Chemistry ; 29(17): e202203835, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36581566

RESUMO

The reliable self-assembly of microporous metal-phosphonate materials remains a longstanding challenge. This stems from, generally, more coordination modes for the functional group allowing more dense structures, and stronger bonding driving less crystalline products. Here, a novel orthogonalized aryl-phosphonate linker, 1,3,5-tris(4'-phosphono-2',6'-dimethylphenyl) benzene (H6 L3) has been used to direct formation of open frameworks. The peripheral aryl rings of H6 L3 are orthogonalized relative to the central aromatic ring giving a tri-cleft conformation of the linker in which small aromatic molecules can readily associate. When coordinated to magnesium ions, a series of porous crystalline metal-organic, and hydrogen-bonded metal-organic frameworks (MOFs, HMOFs) are formed (CALF-41 (Mg), HCALF-42 (Mg), -43 (Mg)). While most metal-organic frameworks are tailored based on choice of metal and linker, here, the network structures are highly dependent on the inclusion and structure of the guest aromatic compounds. Larger guests, and a higher stoichiometry of metal, result in increased solvation of the metal ion, resulting in networks with connectivities increasingly involving hydrogen-bonds rather than direct phosphonate coordination. Upon thermal activation and aromatic template removal, the materials exhibit surface areas ranging from 400-600 m2 /g. Self-assembly in the absence of aromatic guests yields mixtures of phases, frequently co-producing a dense 3-fold interpenetrated structure (1). Interestingly, a series of both more porous (530-900 m2 /g), and more robust solids is formed by complexing with trivalent metal ions (Al, Ga, In) with aromatic guest; however, these are only attainable as microcrystalline powders. The polyprotic nature of phosphonate linkers enables structural analogy to the divalent analogues and these are identified as CALF-41 analogues. Finally, insights to the structural transformations during metal ion desolvation in this family are gained by considering a pair of structurally related Co materials, whose hydrogen-bonded (HCALF-44 (Co)) and desolvated (CALF-44 (Co)) coordination bonded networks were fully structurally characterized.

2.
Chemistry ; 28(31): e202200874, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35349770

RESUMO

The coordinative pliancy of the phosphonate functional group means that metal-phosphonate materials often self-assemble as well-packed structures with minimal porosity, as efficient inter-ligand packing is enabled. Here, we report a multistep synthesis of a novel aryl-phosphonate linker with an orthogonalized ligand core, 1,3,5-tris(4'-phosphonophenyl)-2,4,6-trimethylbenzene (H6 L2) designed to form more open structures. A series of crystalline metal-phosphonate frameworks (CALF-35 to -39) have been assembled by coordinating to divalent metals (Ba, Sr, Ca, Mg, Zn). H6 L2 is unable to pack efficiently and, as a consequence, yields several distinct microporous structures. The resulting structures are discussed in detail, with a focus on the solid-state packing of the sterically rigidified linker. Combined with larger cations (Sr, and Ba), H6 L2 packs in a parallel-offset manner, yielding isomorphous and microporous metal-organic frameworks (CALF-35 (Sr), and (Ba)). When coordinated to smaller metals (Ca, Mg, Zn), H6 L2 forms four new structures. Two Ca MOFs of different stoichiometry, (CALF-36 and 37) and a Mg MOF CALF-38 show narrow pores and have high selectivities for CO2 over N2 and CH4 . Finally, in CALF-39 (Zn), H6 L2 linkers pack in a herringbone fashion, resulting in a material with 10.9×10.1 Å2 square channels. The stability of all structures was tested, and the most porous structure, CALF-39 (Zn), was found to retain its structure and gas adsorption after immersion in water over pH 3-11.


Assuntos
Estruturas Metalorgânicas , Organofosfonatos , Ligantes , Estruturas Metalorgânicas/química , Metais/química , Porosidade
3.
Sci Adv ; 3(5): e1700149, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28508082

RESUMO

Replacing molecular chlorine and hydrochloric acid with less energy- and risk-intensive reagents would markedly improve the environmental impact of metal manufacturing at a time when demand for metals is rapidly increasing. We describe a recyclable quinone/catechol redox platform that provides an innovative replacement for elemental chlorine and hydrochloric acid in the conversion of either germanium metal or germanium dioxide to a germanium tetrachloride substitute. Germanium is classified as a "critical" element based on its high dispersion in the environment, growing demand, and lack of suitable substitutes. Our approach replaces the oxidizing capacity of chlorine with molecular oxygen and replaces germanium tetrachloride with an air- and moisture-stable Ge(IV)-catecholate that is kinetically competent for conversion to high-purity germanes.

4.
Chem Sci ; 7(1): 707-712, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28791114

RESUMO

We develop an associative synthesis of metal-organic materials that combines solid-state metal oxidation and coordination-driven self-assembly into a one-step, waste-free transformation. The methodology hinges on the unique reactivity of ortho-quinones, which we introduce as versatile oxidants for mechanochemical synthesis. Our strategy opens a previously unexplored route to paramagnetic metal-organic materials from elementary metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...