Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3724, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355772

RESUMO

Here we present a sample of 12 massive quiescent galaxy candidates at [Formula: see text] observed with the James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec). These galaxies were pre-selected from the Hubble Space Telescope imaging and 10 of our sources were unable to be spectroscopically confirmed by ground based spectroscopy. By combining spectroscopic data from NIRSpec with multi-wavelength imaging data from the JWST Near Infrared Camera (NIRCam), we analyse their stellar populations and their formation histories. We find that all of our galaxies classify as quiescent based on the reconstruction of their star formation histories but show a variety of quenching timescales and ages. All our galaxies are massive ([Formula: see text] M[Formula: see text]), with masses comparable to massive galaxies in the local Universe. We find that the oldest galaxy in our sample formed [Formula: see text] M[Formula: see text] of mass within the first few hundred million years of the Universe and has been quenched for more than a billion years by the time of observation at [Formula: see text] ([Formula: see text] billion years after the Big Bang). Our results point to very early formation of massive galaxies requiring a high conversion rate of baryons to stars in the early Universe.

2.
Nature ; 628(8007): 277-281, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354832

RESUMO

The formation of galaxies by gradual hierarchical co-assembly of baryons and cold dark matter halos is a fundamental paradigm underpinning modern astrophysics1,2 and predicts a strong decline in the number of massive galaxies at early cosmic times3-5. Extremely massive quiescent galaxies (stellar masses of more than 1011 M⊙) have now been observed as early as 1-2 billion years after the Big Bang6-13. These galaxies are extremely constraining on theoretical models, as they had formed 300-500 Myr earlier, and only some models can form massive galaxies this early12,14. Here we report on the spectroscopic observations with the JWST of a massive quiescent galaxy ZF-UDS-7329 at redshift 3.205 ± 0.005. It has eluded deep ground-based spectroscopy8, it is significantly redder than is typical and its spectrum reveals features typical of much older stellar populations. Detailed modelling shows that its stellar population formed around 1.5 billion years earlier in time (z ≈ 11) at an epoch when dark matter halos of sufficient hosting mass had not yet assembled in the standard scenario4,5. This observation may indicate the presence of undetected populations of early galaxies and the possibility of significant gaps in our understanding of early stellar populations, galaxy formation and the nature of dark matter.

3.
Nature ; 628(8006): 57-61, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354833

RESUMO

Early JWST observations have uncovered a population of red sources that might represent a previously overlooked phase of supermassive black hole growth1-3. One of the most intriguing examples is an extremely red, point-like object that was found to be triply imaged by the strong lensing cluster Abell 2744 (ref. 4). Here we present deep JWST/NIRSpec observations of this object, Abell2744-QSO1. The spectroscopy confirms that the three images are of the same object, and that it is a highly reddened (AV ≃ 3) broad emission line active galactic nucleus at a redshift of zspec = 7.0451 ± 0.0005. From the width of Hß (full width at half-maximum = 2,800 ± 250 km s-1), we derive a black hole mass of M BH = 4 - 1 + 2 × 1 0 7 M ⊙ . We infer a very high ratio of black-hole-to-galaxy mass of at least 3%, an order of magnitude more than that seen in local galaxies5 and possibly as high as 100%. The lack of strong metal lines in the spectrum together with the high bolometric luminosity (Lbol = (1.1 ± 0.3) × 1045 erg s-1) indicate that we are seeing the black hole in a phase of rapid growth, accreting at 30% of the Eddington limit. The rapid growth and high black-hole-to-galaxy mass ratio of Abell2744-QSO1 suggest that it may represent the missing link between black hole seeds6 and one of the first luminous quasars7.

4.
Nature ; 618(7965): 480-483, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198479

RESUMO

In the first billion years after the Big Bang, sources of ultraviolet (UV) photons are believed to have ionized intergalactic hydrogen, rendering the Universe transparent to UV radiation. Galaxies brighter than the characteristic luminosity L* (refs. 1,2) do not provide enough ionizing photons to drive this cosmic reionization. Fainter galaxies are thought to dominate the photon budget; however, they are surrounded by neutral gas that prevents the escape of the Lyman-α photons, which has been the dominant way to identify them so far. JD1 was previously identified as a triply-imaged galaxy with a magnification factor of 13 provided by the foreground cluster Abell 2744 (ref. 3), and a photometric redshift of z ≈ 10. Here we report the spectroscopic confirmation of this very low luminosity (≈0.05 L*) galaxy at z = 9.79, observed 480 Myr after the Big Bang, by means of the identification of the Lyman break and redward continuum, as well as multiple ≳4σ emission lines, with the Near-InfraRed Spectrograph (NIRSpec) and Near-InfraRed Camera (NIRCam) instruments. The combination of the James Webb Space Telescope (JWST) and gravitational lensing shows that this ultra-faint galaxy (MUV = -17.35)-with a luminosity typical of the sources responsible for cosmic reionization-has a compact (≈150 pc) and complex morphology, low stellar mass (107.19 M⊙) and subsolar (≈0.6 Z⊙) gas-phase metallicity.

5.
Nature ; 544(7648): 71-74, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28382981

RESUMO

Finding massive galaxies that stopped forming stars in the early Universe presents an observational challenge because their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These surveys have revealed the presence of massive, quiescent early-type galaxies appearing as early as redshift z ≈ 2, an epoch three billion years after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy-formation models, in which they form rapidly at z ≈ 3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, using coarsely sampled photometry. However, these early, massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here we report the spectroscopic confirmation of one such galaxy at redshift z = 3.717, with a stellar mass of 1.7 × 1011 solar masses. We derive its age to be nearly half the age of the Universe at this redshift and the absorption line spectrum shows no current star formation. These observations demonstrate that the galaxy must have formed the majority of its stars quickly, within the first billion years of cosmic history in a short, extreme starburst. This ancestral starburst appears similar to those being found by submillimetre-wavelength surveys. The early formation of such massive systems implies that our picture of early galaxy assembly requires substantial revision.

6.
Mon Not R Astron Soc ; 464(4): 4807-4822, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28066154

RESUMO

We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ω c h2, H(z), and DA (z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.

7.
Nature ; 467(7316): 684-6, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20930839

RESUMO

Observations of star formation and kinematics in early galaxies at high spatial and spectral resolution have shown that two-thirds are massive rotating disk galaxies, with the remainder being less massive non-rotating objects. The line-of-sight-averaged velocity dispersions are typically five times higher than in today's disk galaxies. This suggests that gravitationally unstable, gas-rich disks in the early Universe are fuelled by cold, dense accreting gas flowing along cosmic filaments and penetrating hot galactic gas halos. These accreting flows, however, have not been observed, and cosmic accretion cannot power the observed level of turbulence. Here we report observations of a sample of rare, high-velocity-dispersion disk galaxies in the nearby Universe where cold accretion is unlikely to drive their high star formation rates. We find that their velocity dispersions are correlated with their star formation rates, but not their masses or gas fractions, which suggests that star formation is the energetic driver of galaxy disk turbulence at all cosmic epochs.

8.
Nature ; 460(7256): 694-5, 2009 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19661904
9.
Nature ; 430(6996): 181-4, 2004 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-15241407

RESUMO

Hierarchical galaxy formation is the model whereby massive galaxies form from an assembly of smaller units. The most massive objects therefore form last. The model succeeds in describing the clustering of galaxies, but the evolutionary history of massive galaxies, as revealed by their visible stars and gas, is not accurately predicted. Near-infrared observations (which allow us to measure the stellar masses of high-redshift galaxies) and deep multi-colour images indicate that a large fraction of the stars in massive galaxies form in the first 5 Gyr (refs 4-7), but uncertainties remain owing to the lack of spectra to confirm the redshifts (which are estimated from the colours) and the role of obscuration by dust. Here we report the results of a spectroscopic redshift survey that probes the most massive and quiescent galaxies back to an era only 3 Gyr after the Big Bang. We find that at least two-thirds of massive galaxies have appeared since this era, but also that a significant fraction of them are already in place in the early Universe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...