Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1096239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909438

RESUMO

Root-knot nematodes (Meloidogyne spp.) are major pests of many important crops around the world. In the Northwestern region of the United States of America (USA), Meloidogyne chitwoodi causes economic losses in potatoes because the nematodes can infect the tubers, which leads to potato galling and reductions in marketable yield. Meloidogyne chitwoodi is a quarantine pathogen in certain potato export markets, and there is little industry tolerance for the presence of this nematode. Recently, two Meloidogyne species that are not known to be present in agricultural fields in the USA were detected on golf turfgrasses in California and Washington. These species, M. fallax and M. minor, are morphologically similar to M. chitwoodi and can infect potatoes and cause tuber damage. Their detection in the USA means that they could potentially infest potato fields and become a problem in potato production. Additionally, M. fallax is a regulated plant pest in the USA, which makes the correct identification of potato-infecting root-knot nematodes important. Previously, there was no single-tube assay that could determine whether M. chitwoodi, M. fallax, and/or M. minor were present in a sample. Thus, a molecular beacon real-time PCR assay which can reliably detect M. chitwoodi, M. fallax, or M. minor from crude nematode extracts was designed and characterized.

2.
PLoS One ; 8(2): e56814, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451091

RESUMO

Rhizoctonia solani is an important soil-borne necrotrophic fungal pathogen, with a broad host range and little effective resistance in crop plants. Arabidopsis is resistant to R. solani AG8 but susceptible to R. solani AG2-1. A screen of 36 Arabidopsis ecotypes and mutants affected in the auxin, camalexin, salicylic acid, abscisic acid and ethylene/jasmonic acid pathways did not reveal any variation in response to R. solani and demonstrated that resistance to AG8 was independent of these defense pathways. The Arabidopsis Affymetrix ATH1 Genome array was used to assess global gene expression changes in plants infected with AG8 and AG2-1 at seven days post-infection. While there was considerable overlap in the response, some gene families were differentially affected by AG8 or AG2-1 and included those involved in oxidative stress, cell wall associated proteins, transcription factors and heat shock protein genes. Since a substantial proportion of the gene expression changes were associated with oxidative stress responses, we analysed the role of NADPH oxidases in resistance. While single NADPH oxidase mutants had no effect, a NADPH oxidase double mutant atrbohf atrbohd resulted in an almost complete loss of resistance to AG8, suggesting that reactive oxidative species play an important role in Arabidopsis's resistance to R. solani.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/microbiologia , NADPH Oxidases/genética , Rhizoctonia/patogenicidade , Resistência à Doença/genética , Genômica
3.
Funct Plant Biol ; 37(6): 499-512, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21743794

RESUMO

The analysis of plant-pathogen interactions is a rapidly moving research field and one that is very important for productive agricultural systems. The focus of this review is on the evolution of plant defence responses and the coevolution of their pathogens, primarily from a molecular-genetic perspective. It explores the evolution of the major types of plant defence responses including pathogen associated molecular patterns and effector triggered immunity as well as the forces driving pathogen evolution, such as the mechanisms by which pathogen lineages and species evolve. Advances in our understanding of plant defence signalling, stomatal regulation, R gene-effector interactions and host specific toxins are used to highlight recent insights into the coevolutionary arms race between pathogens and plants. Finally, the review considers the intriguing question of how plants have evolved the ability to distinguish friends such as rhizobia and mycorrhiza from their many foes.

4.
Mol Plant Microbe Interact ; 21(5): 576-85, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18393617

RESUMO

The Mi-1 gene in tomato confers effective resistance against several species of root-knot nematode, including Meloidogyne javanica. A strain of M. javanica that can reproduce on tomato with Mi-1 was obtained from a culture of an avirulent strain after greenhouse selection. DNA blots and amplified fragment length polymorphism (AFLP) analysis indicated that the two nematode strains are closely related. Expression patterns visualized as cDNA AFLPs were nearly identical except for a cDNA fragment, Cg-1, that was present in the avirulent strain but not in the virulent strain. DNA blots showed that Cg-1 corresponds to a member of a small gene family with one or more copies missing in the virulent strain compared with the avirulent strain. Except for the presence of a histone stem loop near the 3' end of the transcript, Cg-1 shows no similarity to other sequences in GenBank. The longest open reading frame is 32 amino acids and initiates at the fourth AUG in the predicted transcript. When nematode juveniles of the Mi-1-avirulent strain were soaked in dsRNA corresponding to part of the predicted Cg-1 transcript, they produced progeny that were virulent on tomato carrying the Mi-1 gene, strongly suggesting that Cg-1 is required in the nematode for Mi-1-mediated resistance.


Assuntos
Genes de Plantas/genética , Nematoides/genética , Solanum lycopersicum/genética , Animais , Sequência de Bases , Solanum lycopersicum/parasitologia , Dados de Sequência Molecular , Nematoides/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Polimorfismo Genético , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência/genética
5.
Proc Natl Acad Sci U S A ; 101(13): 4701-5, 2004 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-15070781

RESUMO

In the establishment of the legume-rhizobial symbiosis, bacterial lipochitooligosaccharide signaling molecules termed Nod factors activate the formation of a novel root organ, the nodule. Nod factors elicit several responses in plant root hair cells, including oscillations in cytoplasmic calcium levels (termed calcium spiking) and alterations in root hair growth. A number of plant mutants with defects in the Nod factor signaling pathway have been identified. One such Medicago truncatula mutant, dmi3, exhibits calcium spiking and root hair swelling in response to Nod factor, but fails to initiate symbiotic gene expression or cell divisions for nodule formation. On the basis of these data, it is thought that the dmi3 mutant perceives Nod factor but fails to transduce the signal downstream of calcium spiking. Additionally, the dmi3 mutant is defective in the symbiosis with mycorrhizal fungi, indicating the importance of the encoded protein in multiple symbioses. We report the identification of the DMI3 gene, using a gene cloning method based on transcript abundance. We show that transcript-based cloning is a valid approach for cloning genes in barley, indicating the value of this technology in crop plants. DMI3 encodes a calcium/calmodulin-dependent protein kinase. Mutants in pea sym9 have phenotypes similar to dmi3 and have alterations in this gene. The DMI3 class of proteins is well conserved among plants that interact with mycorrhizal fungi, but it is less conserved in Arabidopsis thaliana, which does not participate in the mycorrhizal symbiosis.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Medicago/enzimologia , Medicago/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Sequência Conservada , Primers do DNA , Hordeum/enzimologia , Hordeum/fisiologia , Dados de Sequência Molecular , Micorrizas/fisiologia , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Simbiose , Transcrição Gênica
6.
Curr Opin Plant Biol ; 6(4): 327-33, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12873526

RESUMO

Root-knot nematodes and cyst nematodes are obligate, biotrophic pathogens of numerous plant species. These organisms cause dramatic changes in the morphology and physiology of their hosts. The molecular characterization of induced plant genes has provided insight into the plant processes that are usurped by nematodes as they establish their specialized feeding cells. Recently, several gene products have been identified that are secreted by the nematode during parasitism. The corresponding genes have strong similarity to microbial genes or to genes that are found in nematodes that parasitize animals. New information on host resistance genes and nematode virulence genes provides additional insight into this complex interaction.


Assuntos
Nematoides/patogenicidade , Plantas/parasitologia , Animais , Genes de Plantas , Plantas/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...