Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 20(7): 1285-1297, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35258172

RESUMO

Allele-specific expression (ASE) can lead to phenotypic diversity and evolution. However, the mechanisms regulating ASE are not well understood, particularly in woody perennial plants. In this study, we investigated ASE genes in the apple cultivar 'Royal Gala' (RG). A high quality chromosome-level genome was assembled using a homozygous tetra-haploid RG plant, derived from anther cultures. Using RNA-sequencing (RNA-seq) data from RG flower and fruit tissues, we identified 2091 ASE genes. Compared with the haploid genome of 'Golden Delicious' (GD), a parent of RG, we distinguished the genomic sequences between the two alleles of 817 ASE genes, and further identified allele-specific presence of a transposable element (TE) in the upstream region of 354 ASE genes. These included MYB110a that encodes a transcription factor regulating anthocyanin biosynthesis. Interestingly, another ASE gene, MYB10 also showed an allele-specific TE insertion and was identified using genome data of other apple cultivars. The presence of the TE insertion in both MYB genes was positively associated with ASE and anthocyanin accumulation in apple petals through analysis of 231 apple accessions, and thus underpins apple flower colour evolution. Our study demonstrated the importance of TEs in regulating ASE on a genome-wide scale and presents a novel method for rapid identification of ASE genes and their regulatory elements in plants.


Assuntos
Malus , Alelos , Antocianinas , Cor , Elementos de DNA Transponíveis , Flores/genética , Flores/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta , Malus/metabolismo , Proteínas de Plantas/genética
2.
Hortic Res ; 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35039839

RESUMO

MicroRNA172 (miR172) plays a role in regulating a diverse range of plant developmental processes, including flowering, fruit development and nodulation. However, its role in regulating flavonoid biosynthesis is unclear. In this study, we show that transgenic apple plants over-expressing miR172 show a reduction in red coloration and anthocyanin accumulation in various tissue types. This reduction was consistent with decreased expression of APETALA2 homolog MdAP2_1a (a miR172 target gene), MdMYB10, and targets of MdMYB10, as demonstrated by both RNA-seq and qRT-PCR analyses. The positive role of MdAP2_1a in regulating anthocyanin biosynthesis was supported by the enhanced petal anthocyanin accumulation in transgenic tobacco plants overexpressing MdAP2_1a, and by the reduction in anthocyanin accumulation in apple and cherry fruits transfected with an MdAP2_1a virus-induced-gene-silencing construct. We demonstrated that MdAP2_1a could bind directly to the promoter and protein sequences of MdMYB10 in yeast and tobacco, and enhance MdMYB10 promotor activity. In Arabidopsis, over-expression of miR172 reduced flavonoid (including anthocyanins and flavonols) concentration and RNA transcript abundance of flavonoid genes in plantlets cultured on medium containing 7% sucrose. The anthocyanin content and RNA abundance of anthocyanin genes could be partially restored by using a synonymous mutant of MdAP2_1a, which had lost the miR172 target sequences at mRNA level, but not restored by using a WT MdAP2_1a. These results indicate that miR172 inhibits flavonoid biosynthesis through suppressing the expression of an AP2 transcription factor that positively regulates MdMYB10.

3.
Hortic Res ; 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35039859

RESUMO

BABY BOOM (BBM) is a member of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) family and its expression has been shown to improve herbaceous plant transformation and regeneration. However, this improvement has not been shown clearly for tree species. This study demonstrated that the efficiency of transgenic apple (Malus domestica Borkh.) plant production was dramatically increased by ectopic expression of the MdBBM1 gene. "Royal Gala" apple plants were first transformed with a CaMV35S-MdBBM1 construct (MBM) under kanamycin selection. These MBM transgenic plants exhibited enhanced shoot regeneration from leaf explants on tissue culture media, with most plants displaying a close-to-normal phenotype compared with CaMV35S-GUS transgenic plants when grown under greenhouse conditions, the exception being that some plants had slightly curly leaves. Thin leaf sections revealed the MBM plants produced more cells than the GUS plants, indicating that ectopic-expression of MdBBM1 enhanced cell division. Transcriptome analysis showed that mRNA levels for cell division activators and repressors linked to hormone (auxin, cytokinin and brassinosteroid) signalling pathways were enhanced and reduced, respectively, in the MBM plants compared with the GUS plants. Plants of eight independent MBM lines were compared with the GUS plants by re-transforming them with an herbicide-resistant gene construct. The number of transgenic plants produced per 100 leaf explants was 0-3% for the GUS plants, 3-8% for five MBM lines, and 20-30% for three MBM lines. Our results provided a solution for overcoming the barriers to transgenic plant production in apple, and possibly in other trees.

4.
Front Plant Sci ; 12: 644424, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069608

RESUMO

The function of floral organ identity genes, APETALA1/2/3, PISTILLATA, AGAMOUS, and SEPALLATA1/2/3, in flower development is highly conserved across angiosperms. Emerging evidence shows that these genes also play important roles in the development of the fruit that originates from floral organs following pollination and fertilization. However, their roles in fruit development may vary significantly between species depending on the floral organ types contributing to the fruit tissues. Fruits of the Rosaceae family develop from different floral organ types depending on the species, for example, peach fruit flesh develops from carpellary tissues, whereas apple and strawberry fruit flesh develop from extra-carpellary tissues, the hypanthium and receptacle, respectively. In this review, we summarize recent advances in understanding floral organ gene function in Rosaceae fruit development and analyze the similarities and diversities within this family as well as between Rosaceae and the model plant species Arabidopsis and tomato. We conclude by suggesting future research opportunities using genomics resources to rapidly dissect gene function in this family of perennial plants.

5.
Plant Biotechnol J ; 17(5): 869-880, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30302894

RESUMO

Annualization of woody perennials has the potential to revolutionize the breeding and production of fruit crops and rapidly improve horticultural species. Kiwifruit (Actinidia chinensis) is a recently domesticated fruit crop with a short history of breeding and tremendous potential for improvement. Previously, multiple kiwifruit CENTRORADIALIS (CEN)-like genes have been identified as potential repressors of flowering. In this study, CRISPR/Cas9- mediated manipulation enabled functional analysis of kiwifruit CEN-like genes AcCEN4 and AcCEN. Mutation of these genes transformed a climbing woody perennial, which develops axillary inflorescences after many years of juvenility, into a compact plant with rapid terminal flower and fruit development. The number of affected genes and alleles and severity of detected mutations correlated with the precocity and change in plant stature, suggesting that a bi-allelic mutation of either AcCEN4 or AcCEN may be sufficient for early flowering, whereas mutations affecting both genes further contributed to precocity and enhanced the compact growth habit. CRISPR/Cas9-mediated mutagenesis of AcCEN4 and AcCEN may be a valuable means to engineer Actinidia amenable for accelerated breeding, indoor farming and cultivation as an annual crop.


Assuntos
Actinidia/genética , Flores/genética , Actinidia/anatomia & histologia , Actinidia/crescimento & desenvolvimento , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Expressão Ectópica do Gene/genética , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Edição de Genes , Genes de Plantas/genética , Genes de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia
6.
Microrna ; 8(2): 166-170, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30501607

RESUMO

BACKGROUND: The discovery that a plant microRNA (miRNAs) from rice (Oryza sativa miR168a) can modify post-transcriptional expression of the mammalian. Low-Density Lipoprotein Receptor Adaptor Protein 1 (LDLRAP1) gene highlights the potential for cross-kingdom miRNAmRNA interactions. OBJECTIVE: To investigate whether common variants of the conserved miR168a family have the capability for similar cross-kingdom regulatory functions, we selected sequences from three dietary plant sources: rice (Oryza sativa), tomato (Solanum lycopersicum), apple (Malus domestica) and compared their ability to regulate human LDLRAP1 expression. METHODS: Target prediction software intaRNA and RNAhybrid were used to analyze and calculate the energy and alignment score between the miR168a variants and human LDLRAP1 mRNA. An in vitro cell-based Dual-Luciferase® Reporter Assay (pmirGLO, Promega), was then used to validate the miRNA-mRNA interaction experimentally. RESULTS: Computational analyses revealed that a single nucleotide difference at position 14 (from the 5' end of the miRNA) creates a G:U wobble in the miRNA-mRNA duplex formed by tomato and apple miR168a variants. This G:U wobble had only a small effect on the free energy score (-33.8-34.7 kcal/mol). However, despite reasonable hybridization energy scores (<-20 kcal/mol) for all miR168a variants, only the rice miR168a variant lacking a G:U wobble significantly reduced LDLRAP1 transcript expression by 25.8 + 7.3% (p<0.05), as measured by relative luciferase activity. CONCLUSION: In summary, single nucleotide differences at key positions can have a marked influence on regulatory function despite similar predicted energy scores and miRNA-mRNA duplex structures.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação da Expressão Gênica de Plantas/genética , Malus/genética , MicroRNAs/genética , Oryza/genética , Solanum lycopersicum/genética , Biologia Computacional , Inativação Gênica/fisiologia , Humanos , RNA Mensageiro/genética , RNA de Plantas/genética
7.
Plant Direct ; 2(4): e00051, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31245717

RESUMO

Fruit shape represents a key trait that consumers use to identify and select preferred cultivars, and although the manipulation of this trait is an opportunity to create novel, differentiated products, the molecular mechanisms regulating fruit shape are poorly understood in tree fruits. In this study, we have shown that ectopic expression of Malus domestica PISTILLATA (MdPI), the apple ortholog of the floral organ identity gene PISTILLATA (PI), regulates apple fruit tissue growth and shape. MdPI is a single-copy gene, and its expression is high during flower development but barely detectable soon after pollination. Transgenic apple plants with ectopic expression of MdPI produced flowers with white sepals and a conversion of sepals to petals. Interestingly, these plants produced distinctly flattened fruit as a consequence of reduced cell growth at the basipetal position of the fruit. These altered sepal and fruit phenotypes have not been observed in studies using Arabidopsis. This study using apple has advanced our understanding of PI functions outside the control of petal and stamen identity and provided molecular genetic information useful for manipulating fruit tissue growth and fruit shape.

8.
Hortic Res ; 4: 17043, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28944065

RESUMO

Exogenous application of a cytokinin-like compound forchlorfenuron (CPPU) can promote fruit growth, although often at the expense of dry matter (DM), an important indicator of fruit quality. Actinidia chinensis var. deliciosa 'Hayward' fruit are very responsive to CPPU treatments, but the mechanism underlying the significant fruit weight increase and associated decrease in DM is unclear. In this study, we hypothesised that CPPU-enhanced growth increases fruit carbohydrate demand, but limited carbohydrate supply resulted in decreased fruit DM. During fruit development, CPPU effects on physical parameters, metabolites, osmotic pressure and transcriptional changes were assessed under conditions of both standard and a high carbohydrate supply. We showed that CPPU increased fruit fresh weight but the dramatic DM decrease was not carbohydrate limited. Enhanced glucose and fructose concentrations contributed to an increase in soluble carbohydrate osmotic pressure, which was correlated with increased water accumulation in CPPU-treated fruit and up-regulation of water channel aquaporin gene PIP2.4 at 49 days after anthesis. Transcipt analysis suggested that the molecular mechanism contributing to increased glucose and fructose concentrations was altered by carbohydrate supply. At standard carbohydrate supply, the early glucose increase in CPPU fruit was associated with reduced starch synthesis and increased starch degradation. When carbohydrate supply was high, the early glucose increase in CPPU fruit was associated with a general decrease in starch synthesis but up-regulation of vacuolar invertase and fructokinase genes. We conclude that CPPU affected fruit expansion by increasing the osmotically-driven water uptake and its effect was not carbohydrate supply-limited.

9.
Plant Signal Behav ; 11(4): e1156833, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26926448

RESUMO

microRNA172 (miR172) expression has been shown to have a positive effect on Arabidopsis fruit (siliques) growth. In contrast, over-expression of miR172 has a negative influence on fruit growth in apple, resulting in a dramatic reduction in fruit size. This negative influence is supported by the results of analyzing a transposable element (TE) insertional allele of a MIR172 gene that has reduced expression of the miRNA and is associated with an increase in fruit size. Arabidopsis siliques are a dry fruit derived from ovary tissues, whereas apple is a fleshy pome fruit derived mostly from hypanthium tissues. A model has been developed to explain the contrasting impact of miR172 expression in these two plant species based on the differences in their fruit structure. Transgenic apple plants with extremely high levels of miR172 overexpression produced flowers consisting of carpel tissues only, which failed to produce fruit. By comparison, in tomato, a fleshy berry fruit derived from the ovary, high level over-expression of the same miR172 resulted in carpel-only flowers which developed into parthenocarpic fruit. These results further indicate that the influence of miR172 on fruit growth in different plant species depends on its fruit type.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Frutas/crescimento & desenvolvimento , Malus/crescimento & desenvolvimento , MicroRNAs/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Frutas/genética , Solanum lycopersicum/genética , Malus/genética , MicroRNAs/genética , Plantas Geneticamente Modificadas , Especificidade da Espécie
10.
Plant J ; 84(2): 417-27, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26358530

RESUMO

The molecular genetic mechanisms underlying fruit size remain poorly understood in perennial crops, despite size being an important agronomic trait. Here we show that the expression level of a microRNA gene (miRNA172) influences fruit size in apple. A transposon insertional allele of miRNA172 showing reduced expression associates with large fruit in an apple breeding population, whereas over-expression of miRNA172 in transgenic apple significantly reduces fruit size. The transposon insertional allele was found to be co-located with a major fruit size quantitative trait locus, fixed in cultivated apples and their wild progenitor species with relatively large fruit. This finding supports the view that the selection for large size in apple fruit was initiated prior to apple domestication, likely by large mammals, before being subsequently strengthened by humans, and also helps to explain why signatures of genetic bottlenecks and selective sweeps are normally weaker in perennial crops than in annual crops.


Assuntos
Frutas/genética , Malus/genética , MicroRNAs/genética , Alelos
11.
J Exp Bot ; 64(16): 5049-63, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24058160

RESUMO

Tomato, melon, grape, peach, and strawberry primarily accumulate soluble sugars during fruit development. In contrast, kiwifruit (Actinidia Lindl. spp.) and banana store a large amount of starch that is released as soluble sugars only after the fruit has reached maturity. By integrating metabolites measured by gas chromatography-mass spectrometry, enzyme activities measured by a robot-based platform, and transcript data sets during fruit development of Actinidia deliciosa genotypes contrasting in starch concentration and size, this study identified the metabolic changes occurring during kiwifruit development, including the metabolic hallmarks of starch accumulation and turnover. At cell division, a rise in glucose (Glc) concentration was associated with neutral invertase (NI) activity, and the decline of both Glc and NI activity defined the transition to the cell expansion and starch accumulation phase. The high transcript levels of ß-amylase 9 (BAM9) during cell division, prior to net starch accumulation, and the correlation between sucrose phosphate synthase (SPS) activity and sucrose suggest the occurrence of sucrose cycling and starch turnover. ADP-Glc pyrophosphorylase (AGPase) is identified as a key enzyme for starch accumulation in kiwifruit berries, as high-starch genotypes had 2- to 5-fold higher AGPase activity, which was maintained over a longer period of time and was also associated with enhanced and extended transcription of the AGPase large subunit 4 (APL4). The data also revealed that SPS and galactinol might affect kiwifruit starch accumulation, and suggest that phloem unloading into kiwifruit is symplastic. These results are relevant to the genetic improvement of quality traits such as sweetness and sugar/acid balance in a range of fruit species.


Assuntos
Actinidia/metabolismo , Frutas/crescimento & desenvolvimento , Amido/metabolismo , Actinidia/enzimologia , Actinidia/genética , Actinidia/crescimento & desenvolvimento , Frutas/enzimologia , Frutas/genética , Frutas/metabolismo , Genótipo , Glucose/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
12.
PLoS Pathog ; 9(7): e1003503, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935484

RESUMO

The origins of crop diseases are linked to domestication of plants. Most crops were domesticated centuries--even millennia--ago, thus limiting opportunity to understand the concomitant emergence of disease. Kiwifruit (Actinidia spp.) is an exception: domestication began in the 1930s with outbreaks of canker disease caused by P. syringae pv. actinidiae (Psa) first recorded in the 1980s. Based on SNP analyses of two circularized and 34 draft genomes, we show that Psa is comprised of distinct clades exhibiting negligible within-clade diversity, consistent with disease arising by independent samplings from a source population. Three clades correspond to their geographical source of isolation; a fourth, encompassing the Psa-V lineage responsible for the 2008 outbreak, is now globally distributed. Psa has an overall clonal population structure, however, genomes carry a marked signature of within-pathovar recombination. SNP analysis of Psa-V reveals hundreds of polymorphisms; however, most reside within PPHGI-1-like conjugative elements whose evolution is unlinked to the core genome. Removal of SNPs due to recombination yields an uninformative (star-like) phylogeny consistent with diversification of Psa-V from a single clone within the last ten years. Growth assays provide evidence of cultivar specificity, with rapid systemic movement of Psa-V in Actinidia chinensis. Genomic comparisons show a dynamic genome with evidence of positive selection on type III effectors and other candidate virulence genes. Each clade has highly varied complements of accessory genes encoding effectors and toxins with evidence of gain and loss via multiple genetic routes. Genes with orthologs in vascular pathogens were found exclusively within Psa-V. Our analyses capture a pathogen in the early stages of emergence from a predicted source population associated with wild Actinidia species. In addition to candidate genes as targets for resistance breeding programs, our findings highlight the importance of the source population as a reservoir of new disease.


Assuntos
Actinidia/microbiologia , Proteínas de Bactérias/genética , Genoma Bacteriano , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Actinidia/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Frutas/crescimento & desenvolvimento , Frutas/microbiologia , Ilhas Genômicas , Itália , Japão , Nova Zelândia , Filogenia , Doenças das Plantas/etiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/microbiologia , Polimorfismo de Nucleotídeo Único , Pseudomonas syringae/crescimento & desenvolvimento , Pseudomonas syringae/isolamento & purificação , Pseudomonas syringae/patogenicidade , Recombinação Genética , República da Coreia , Especificidade da Espécie , Virulência
13.
Plant Cell Rep ; 32(5): 703-14, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23494389

RESUMO

KEY MESSAGE: Apple acetolactate synthase mutants were generated by site-specific mutagenesis and successfully used as selection marker in tobacco and apple transformation. T-DNA/Apple genome junctions were analysed using genome-walking PCR and sequencing. An Agrobacterium-mediated genetic transformation system was developed for apple (Malus × domestica), using mutants of apple acetolactate synthase (ALS) as a selectable marker. Four apple ALS mutants were generated by site-specific mutagenesis and subsequently cloned under the transcriptional control of the CaMV 35S promoter and ocs 3' terminator, in a pART27-derived plant transformation vector. Three of the four mutations were found to confer resistance to the herbicide Glean(®), containing the active agent chlorsulfuron, in tobacco (Nicotiana tabacum) transformation. In apple transformation, leaf explants infected with Agrobacterium tumefaciens EHA105 containing one of the three ALS mutants resulted in the production of shoots on medium containing 2-8 µg L(-1) Glean(®), whilst uninfected wild-type explants failed to regenerate shoots or survive on medium containing 1 and 3 µg L(-1) Glean(®), respectively. Glean(®)-resistant, regenerated shoots were further multiplied and rooted on medium containing 10 µg L(-1) Glean(®). The T-DNA and apple genome-DNA junctions from eight rooted transgenic apple plants were analysed using genome-walking PCR amplification and sequencing. This analysis confirmed T-DNA integration into the apple genome, identified the genome integration sites and revealed the extent of any vector backbone integration, T-DNA rearrangements and deletions of apple genome DNA at the sites of integration.


Assuntos
Acetolactato Sintase/genética , Marcadores Genéticos , Resistência a Herbicidas/genética , Malus/genética , Agrobacterium tumefaciens , Sequência de Bases , DNA Bacteriano , Vetores Genéticos , Malus/efeitos dos fármacos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Seleção Genética , Sulfonamidas/farmacologia , Nicotiana/genética , Triazinas/farmacologia
14.
J Exp Bot ; 60(13): 3835-48, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19651683

RESUMO

Budbreak in kiwifruit (Actinidia deliciosa) can be poor in locations that have warm winters with insufficient winter chilling. Kiwifruit vines are often treated with the dormancy-breaking chemical hydrogen cyanamide (HC) to increase and synchronize budbreak. This treatment also offers a tool to understand the processes involved in budbreak. A genomics approach is presented here to increase our understanding of budbreak in kiwifruit. Most genes identified following HC application appear to be associated with responses to stress, but a number of genes appear to be associated with the reactivation of growth. Three patterns of gene expression were identified: Profile 1, an HC-induced transient activation; Profile 2, an HC-induced transient activation followed by a growth-related activation; and Profile 3, HC- and growth-repressed. One group of genes that was rapidly up-regulated in response to HC was the glutathione S-transferase (GST) class of genes, which have been associated with stress and signalling. Previous budbreak studies, in three other species, also report up-regulated GST expression. Phylogenetic analysis of these GSTs showed that they clustered into two sub-clades, suggesting a strong correlation between their expression and budbreak across species.


Assuntos
Actinidia/efeitos dos fármacos , Actinidia/genética , Cianamida/farmacologia , Ativação Transcricional/efeitos dos fármacos , Actinidia/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
J Exp Bot ; 60(3): 765-78, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19129165

RESUMO

Vitamin C (L-ascorbic acid, AsA) is an essential metabolite for plants and animals. Kiwifruit (Actinidia spp.) are a rich dietary source of AsA for humans. To understand AsA biosynthesis in kiwifruit, AsA levels and the relative expression of genes putatively involved in AsA biosynthesis, regeneration, and transport were correlated by quantitative polymerase chain reaction in leaves and during fruit development in four kiwifruit genotypes (three species; A. eriantha, A. chinensis, and A. deliciosa). During fruit development, fruit AsA concentration peaked between 4 and 6 weeks after anthesis with A. eriantha having 3-16-fold higher AsA than other genotypes. The rise in AsA concentration typically occurred close to the peak in expression of the L-galactose pathway biosynthetic genes, particularly the GDP-L-galactose guanyltransferase gene. The high concentration of AsA found in the fruit of A. eriantha is probably due to higher expression of the GDP-mannose-3',5'-epimerase and GDP-L-galactose guanyltransferase genes. Over-expression of the kiwifruit GDP-L-galactose guanyltransferase gene in Arabidopsis resulted in up to a 4-fold increase in AsA, while up to a 7-fold increase in AsA was observed in transient expression studies where both GDP-L-galactose guanyltransferase and GDP-mannose-3',5'-epimerase genes were co-expressed. These studies show the importance of GDP-L-galactose guanyltransferase as a rate-limiting step to AsA, and demonstrate how AsA can be significantly increased in plants.


Assuntos
Actinidia/enzimologia , Actinidia/genética , Arabidopsis/metabolismo , Ácido Ascórbico/biossíntese , Frutas/genética , Regulação da Expressão Gênica de Plantas , Nucleotidiltransferases/genética , Arabidopsis/genética , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas , Genótipo , Inositol/metabolismo , Nucleotidiltransferases/metabolismo , Oxirredução , Folhas de Planta/genética , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase , Nicotiana/metabolismo , Transformação Genética
16.
BMC Genomics ; 9: 351, 2008 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-18655731

RESUMO

BACKGROUND: Kiwifruit (Actinidia spp.) are a relatively new, but economically important crop grown in many different parts of the world. Commercial success is driven by the development of new cultivars with novel consumer traits including flavor, appearance, healthful components and convenience. To increase our understanding of the genetic diversity and gene-based control of these key traits in Actinidia, we have produced a collection of 132,577 expressed sequence tags (ESTs). RESULTS: The ESTs were derived mainly from four Actinidia species (A. chinensis, A. deliciosa, A. arguta and A. eriantha) and fell into 41,858 non redundant clusters (18,070 tentative consensus sequences and 23,788 EST singletons). Analysis of flavor and fragrance-related gene families (acyltransferases and carboxylesterases) and pathways (terpenoid biosynthesis) is presented in comparison with a chemical analysis of the compounds present in Actinidia including esters, acids, alcohols and terpenes. ESTs are identified for most genes in color pathways controlling chlorophyll degradation and carotenoid biosynthesis. In the health area, data are presented on the ESTs involved in ascorbic acid and quinic acid biosynthesis showing not only that genes for many of the steps in these pathways are represented in the database, but that genes encoding some critical steps are absent. In the convenience area, genes related to different stages of fruit softening are identified. CONCLUSION: This large EST resource will allow researchers to undertake the tremendous challenge of understanding the molecular basis of genetic diversity in the Actinidia genus as well as provide an EST resource for comparative fruit genomics. The various bioinformatics analyses we have undertaken demonstrates the extent of coverage of ESTs for genes encoding different biochemical pathways in Actinidia.


Assuntos
Actinidia/genética , Actinidia/fisiologia , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Frutas/crescimento & desenvolvimento , Pigmentação/genética , Paladar , Actinidia/crescimento & desenvolvimento , Actinidia/metabolismo , Adulto , Alérgenos/genética , Ácido Ascórbico/genética , Ácido Ascórbico/metabolismo , Criança , Códon , Sequência Consenso , Ésteres/metabolismo , Frutas/genética , Frutas/metabolismo , Genes de Plantas/genética , Marcadores Genéticos , Humanos , Repetições de Microssatélites , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/genética , Polimorfismo de Nucleotídeo Único , Ácido Quínico/metabolismo , Análise de Sequência , Terpenos/metabolismo
17.
BMC Plant Biol ; 8: 16, 2008 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-18279528

RESUMO

BACKGROUND: Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45-55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. RESULTS: Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. CONCLUSION: Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development.


Assuntos
Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Flores/genética , Flores/metabolismo , Frutas/genética , Frutas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Malus/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Amido/metabolismo , Fatores de Tempo
18.
Plant Physiol ; 144(4): 1899-912, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17556515

RESUMO

Ethylene is the major effector of ripening in many fleshy fruits. In apples (Malus x domestica) the addition of ethylene causes a climacteric burst of respiration, an increase in aroma, and softening of the flesh. We have generated a transgenic line of 'Royal Gala' apple that produces no detectable levels of ethylene using antisense ACC OXIDASE, resulting in apples with no ethylene-induced ripening attributes. In response to external ethylene these antisense fruits undergo a normal climacteric burst and produced increasing concentrations of ester, polypropanoid, and terpene volatile compounds over an 8-d period. A total of 186 candidate genes that might be involved in the production of these compounds were mined from expressed sequence tags databases and full sequence obtained. Expression patterns of 179 of these were assessed using a 15,720 oligonucleotide apple microarray. Based on sequence similarity and gene expression patterns we identified 17 candidate genes that are likely to be ethylene control points for aroma production in apple. While many of the biosynthetic steps in these pathways were represented by gene families containing two or more genes, expression patterns revealed that only a single member is typically regulated by ethylene. Only certain points within the aroma biosynthesis pathways were regulated by ethylene. Often the first step, and in all pathways the last steps, contained enzymes that were ethylene regulated. This analysis suggests that the initial and final enzymatic steps with the biosynthetic pathways are important transcriptional regulation points for aroma production in apple.


Assuntos
Vias Biossintéticas/fisiologia , Etilenos/metabolismo , Frutas/metabolismo , Malus/metabolismo , Odorantes , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genômica , Malus/genética , Família Multigênica , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Volatilização
19.
Plant Physiol ; 141(1): 147-66, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16531485

RESUMO

The domestic apple (Malus domestica; also known as Malus pumila Mill.) has become a model fruit crop in which to study commercial traits such as disease and pest resistance, grafting, and flavor and health compound biosynthesis. To speed the discovery of genes involved in these traits, develop markers to map genes, and breed new cultivars, we have produced a substantial expressed sequence tag collection from various tissues of apple, focusing on fruit tissues of the cultivar Royal Gala. Over 150,000 expressed sequence tags have been collected from 43 different cDNA libraries representing 34 different tissues and treatments. Clustering of these sequences results in a set of 42,938 nonredundant sequences comprising 17,460 tentative contigs and 25,478 singletons, together representing what we predict are approximately one-half the expressed genes from apple. Many potential molecular markers are abundant in the apple transcripts. Dinucleotide repeats are found in 4,018 nonredundant sequences, mainly in the 5'-untranslated region of the gene, with a bias toward one repeat type (containing AG, 88%) and against another (repeats containing CG, 0.1%). Trinucleotide repeats are most common in the predicted coding regions and do not show a similar degree of sequence bias in their representation. Bi-allelic single-nucleotide polymorphisms are highly abundant with one found, on average, every 706 bp of transcribed DNA. Predictions of the numbers of representatives from protein families indicate the presence of many genes involved in disease resistance and the biosynthesis of flavor and health-associated compounds. Comparisons of some of these gene families with Arabidopsis (Arabidopsis thaliana) suggest instances where there have been duplications in the lineages leading to apple of biosynthetic and regulatory genes that are expressed in fruit. This resource paves the way for a concerted functional genomics effort in this important temperate fruit crop.


Assuntos
Etiquetas de Sequências Expressas , Malus/genética , Arabidopsis/genética , Sequência de Bases , Análise por Conglomerados , Evolução Molecular , Biblioteca Gênica , Genômica , Malus/crescimento & desenvolvimento , Malus/metabolismo , Repetições Minissatélites , Dados de Sequência Molecular , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Transdução de Sinais , Repetições de Trinucleotídeos
20.
Plant Cell Rep ; 25(5): 425-31, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16404600

RESUMO

Protocols were developed for regeneration and Agrobacterium-mediated transformation of Actinidia eriantha Benth. A. eriantha has a number of features that make it a useful tool for functional genomics in Actinidia: the vines are relatively small and non-vigorous in nature, flowers form all over the vine including on lower axillary branches and the species flowers prolifically in greenhouse conditions. Flowering and fruiting of transgenic A. eriantha plants was obtained within 2 years of transformation in a containment greenhouse. GUS (beta-glucuronidase) activity indicating stable expression of the uidA gene was observed in leaf, stem, root, petal and fruit tissues. Molecular evidence for incorporation of transgenes into the A. eriantha genome was obtained by PCR and DNA gel blot analysis. Inheritance of transgenic phenotypes was demonstrated in seedling progeny. Functional genomic studies in kiwifruit have been initiated using transgenic A. eriantha plants.


Assuntos
Actinidia/genética , Plantas Geneticamente Modificadas/genética , Transformação Genética , Actinidia/metabolismo , Flores/genética , Flores/fisiologia , Frutas/genética , Frutas/fisiologia , Vetores Genéticos , Glucuronidase/genética , Glucuronidase/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Rhizobium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...