Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(24): 2914-2929.e7, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38113852

RESUMO

Low-grade chronic inflammation is a hallmark of ageing, associated with impaired tissue function and disease development. However, how cell-intrinsic and -extrinsic factors collectively establish this phenotype, termed inflammaging, remains poorly understood. We addressed this question in the mouse intestinal epithelium, using mouse organoid cultures to dissect stem cell-intrinsic and -extrinsic sources of inflammaging. At the single-cell level, we found that inflammaging is established differently along the crypt-villus axis, with aged intestinal stem cells (ISCs) strongly upregulating major histocompatibility complex class II (MHC-II) genes. Importantly, the inflammaging phenotype was stably propagated by aged ISCs in organoid cultures and associated with increased chromatin accessibility at inflammation-associated loci in vivo and ex vivo, indicating cell-intrinsic inflammatory memory. Mechanistically, we show that the expression of inflammatory genes is dependent on STAT1 signaling. Together, our data identify that intestinal inflammaging in mice is promoted by a cell-intrinsic mechanism, stably propagated by ISCs, and associated with a disbalance in immune homeostasis.


Assuntos
Mucosa Intestinal , Intestinos , Camundongos , Animais , Células-Tronco , Fenótipo , Inflamação
2.
Mol Biosyst ; 11(12): 3231-43, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26434634

RESUMO

The activity of proteins is dictated by their three-dimensional structure, the native state, and is influenced by their ability to remain in or return to the folded native state under physiological conditions. Backbone circularization is thought to increase protein stability by decreasing the conformational entropy in the unfolded state. A positive effect of circularization on stability has been shown for several proteins. Here, we report the development of a cloning standard that facilitates implementing the SICLOPPS technology to circularize proteins of interest using split inteins. To exemplify the usage of the cloning standard we constructed two circularization vectors based on the Npu DnaE and gp41-1 split inteins, respectively. We use these vectors to overexpress in Escherichia coli circular forms of the Bacillus subtilis enzyme family 11 xylanase that differ in the identity and number of additional amino acids used for circularization (exteins). We found that the variant circularized with only one additional serine has increased thermostability of 7 °C compared to native xylanase. The variant circularized with six additional amino acids has only a mild increase in thermostability compared to the corresponding exteins-bearing linear xylanase, but is less stable than native xylanase. However, this circular xylanase retains more than 50% of its activity after heat shock at elevated temperatures, while native xylanase and the corresponding exteins-bearing linear xylanase are largely inactivated. We correlate this residual activity to the fewer protein aggregates found in the test tubes of circular xylanase after heat shock, suggesting that circularization protects the protein from aggregation under these conditions. Taken together, these data indicate that backbone circularization has a positive effect on xylanase and can lead to increased thermostability, provided the appropriate exteins are selected. We believe that our cloning standard and circularization vectors will facilitate testing the effects of circularization on other proteins.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Agregados Proteicos , Xilosidases/química , Xilosidases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Vetores Genéticos/genética , Inteínas , Modelos Moleculares , Conformação Proteica , Processamento de Proteína Pós-Traducional , Processamento de Proteína , Termodinâmica , Xilosidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...