Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 614(7948): 539-547, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725933

RESUMO

Antibody responses during infection and vaccination typically undergo affinity maturation to achieve high-affinity binding for efficient neutralization of pathogens1,2. Similarly, high affinity is routinely the goal for therapeutic antibody generation. However, in contrast to naturally occurring or direct-targeting therapeutic antibodies, immunomodulatory antibodies, which are designed to modulate receptor signalling, have not been widely examined for their affinity-function relationship. Here we examine three separate immunologically important receptors spanning two receptor superfamilies: CD40, 4-1BB and PD-1. We show that low rather than high affinity delivers greater activity through increased clustering. This approach delivered higher immune cell activation, in vivo T cell expansion and antitumour activity in the case of CD40. Moreover, an inert anti-4-1BB monoclonal antibody was transformed into an agonist. Low-affinity variants of the clinically important antagonistic anti-PD-1 monoclonal antibody nivolumab also mediated more potent signalling and affected T cell activation. These findings reveal a new paradigm for augmenting agonism across diverse receptor families and shed light on the mechanism of antibody-mediated receptor signalling. Such affinity engineering offers a rational, efficient and highly tuneable solution to deliver antibody-mediated receptor activity across a range of potencies suitable for translation to the treatment of human disease.


Assuntos
Anticorpos Monoclonais , Afinidade de Anticorpos , Imunomodulação , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Antígenos CD40/efeitos dos fármacos , Antígenos CD40/imunologia , Imunomodulação/efeitos dos fármacos , Imunomodulação/imunologia , Nivolumabe/imunologia , Nivolumabe/farmacologia
2.
Sci Immunol ; 7(73): eabm3723, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857577

RESUMO

Antibodies protect from infection, underpin successful vaccines and elicit therapeutic responses in otherwise untreatable cancers and autoimmune conditions. The human IgG2 isotype displays a unique capacity to undergo disulfide shuffling in the hinge region, leading to modulation of its ability to drive target receptor signaling (agonism) in a variety of important immune receptors, through hitherto unexplained molecular mechanisms. To address the underlying process and reveal how hinge disulfide orientation affects agonistic activity, we generated a series of cysteine to serine exchange variants in the hinge region of the clinically relevant monoclonal antibody ChiLob7/4, directed against the key immune receptor CD40. We report how agonistic activity varies with disulfide pattern and is afforded by the presence of a disulfide crossover between F(ab) arms in the agonistic forms, independently of epitope, as observed in the determined crystallographic structures. This structural "switch" affects directly on antibody conformation and flexibility. Small-angle x-ray scattering and ensemble modeling demonstrated that the least flexible variants adopt the fewest conformations and evoke the highest levels of receptor agonism. This covalent change may be amenable for broad implementation to modulate receptor signaling in an epitope-independent manner in future therapeutics.


Assuntos
Dissulfetos , Imunoglobulina G , Anticorpos Monoclonais , Dissulfetos/química , Epitopos , Humanos , Conformação Proteica
3.
J Exp Clin Cancer Res ; 41(1): 131, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392965

RESUMO

BACKGROUND: Hypoxia is a hallmark of the tumor microenvironment (TME) and in addition to altering metabolism in cancer cells, it transforms tumor-associated stromal cells. Within the tumor stromal cell compartment, tumor-associated macrophages (TAMs) provide potent pro-tumoral support. However, TAMs can also be harnessed to destroy tumor cells by monoclonal antibody (mAb) immunotherapy, through antibody dependent cellular phagocytosis (ADCP). This is mediated via antibody-binding activating Fc gamma receptors (FcγR) and impaired by the single inhibitory FcγR, FcγRIIb. METHODS: We applied a multi-OMIC approach coupled with in vitro functional assays and murine tumor models to assess the effects of hypoxia inducible factor (HIF) activation on mAb mediated depletion of human and murine cancer cells. For mechanistic assessments, siRNA-mediated gene silencing, Western blotting and chromatin immune precipitation were utilized to assess the impact of identified regulators on FCGR2B gene transcription. RESULTS: We report that TAMs are FcγRIIbbright relative to healthy tissue counterparts and under hypoxic conditions, mononuclear phagocytes markedly upregulate FcγRIIb. This enhanced FcγRIIb expression is transcriptionally driven through HIFs and Activator protein 1 (AP-1). Importantly, this phenotype reduces the ability of macrophages to eliminate anti-CD20 monoclonal antibody (mAb) opsonized human chronic lymphocytic leukemia cells in vitro and EL4 lymphoma cells in vivo in human FcγRIIb+/+ transgenic mice. Furthermore, post-HIF activation, mAb mediated blockade of FcγRIIb can partially restore phagocytic function in human monocytes. CONCLUSION: Our findings provide a detailed molecular and cellular basis for hypoxia driven resistance to antitumor mAb immunotherapy, unveiling a hitherto unexplored aspect of the TME. These findings provide a mechanistic rationale for the modulation of FcγRIIb expression or its blockade as a promising strategy to enhance approved and novel mAb immunotherapies.


Assuntos
Leucemia Linfocítica Crônica de Células B , Receptores de IgG , Animais , Anticorpos Monoclonais/farmacologia , Humanos , Hipóxia/metabolismo , Imunoterapia , Leucemia Linfocítica Crônica de Células B/metabolismo , Macrófagos/metabolismo , Camundongos , Receptores de IgG/genética , Receptores de IgG/metabolismo , Microambiente Tumoral
4.
Commun Biol ; 4(1): 772, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162985

RESUMO

Monoclonal antibodies (mAb) and natural ligands targeting costimulatory tumor necrosis factor receptors (TNFR) exhibit a wide range of agonistic activities and antitumor responses. The mechanisms underlying these differential agonistic activities remain poorly understood. Here, we employ a panel of experimental and clinically-relevant molecules targeting human CD40, 4-1BB and OX40 to examine this issue. Confocal and STORM microscopy reveal that strongly agonistic reagents induce clusters characterized by small area and high receptor density. Using antibody pairs differing only in isotype we show that hIgG2 confers significantly more receptor clustering than hIgG1 across all three receptors, explaining its greater agonistic activity, with receptor clustering shielding the receptor-agonist complex from further molecular access. Nevertheless, discrete receptor clustering patterns are observed with different hIgG2 mAb, with a unique rod-shaped assembly observed with the most agonistic mAb. These findings dispel the notion that larger receptor clusters elicit greater agonism, and instead point to receptor density and subsequent super-structure as key determinants.


Assuntos
Receptores do Fator de Necrose Tumoral/agonistas , Animais , Anticorpos Monoclonais/farmacologia , Afinidade de Anticorpos , Antígenos CD40/agonistas , Antígenos CD40/química , Linhagem Celular , Humanos , Imunoglobulina G/farmacologia , Camundongos , Microscopia Confocal , Receptores OX40/agonistas , Receptores do Fator de Necrose Tumoral/química , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas
5.
JCI Insight ; 5(18)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870822

RESUMO

Despite advances in identifying the key immunoregulatory roles of many of the human leukocyte immunoglobulin-like receptor (LILR) family members, the function of the inhibitory molecule LILRB3 (ILT5, CD85a, LIR3) remains unclear. Studies indicate a predominant myeloid expression; however, high homology within the LILR family and a relative paucity of reagents have hindered progress toward identifying the function of this receptor. To investigate its function and potential immunomodulatory capacity, a panel of LILRB3-specific monoclonal antibodies (mAbs) was generated. LILRB3-specific mAbs bound to discrete epitopes in Ig-like domain 2 or 4. LILRB3 ligation on primary human monocytes by an agonistic mAb resulted in phenotypic and functional changes, leading to potent inhibition of immune responses in vitro, including significant reduction in T cell proliferation. Importantly, agonizing LILRB3 in humanized mice induced tolerance and permitted efficient engraftment of allogeneic cells. Our findings reveal powerful immunosuppressive functions of LILRB3 and identify it as an important myeloid checkpoint receptor.


Assuntos
Antígenos CD/genética , Epitopos/imunologia , Proteínas de Checkpoint Imunológico/genética , Tolerância Imunológica , Linfoma/genética , Monócitos/imunologia , Receptores Imunológicos/genética , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/metabolismo , Antígenos CD/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Mapeamento de Epitopos , Epitopos/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Xenoenxertos , Humanos , Proteínas de Checkpoint Imunológico/imunologia , Linfoma/imunologia , Linfoma/mortalidade , Linfoma/patologia , Camundongos , Monócitos/citologia , Biblioteca de Peptídeos , Cultura Primária de Células , Receptores Imunológicos/agonistas , Receptores Imunológicos/imunologia , Análise de Sobrevida , Linfócitos T/citologia , Linfócitos T/imunologia , Transplante Homólogo
6.
J Immunother Cancer ; 8(1)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32554613

RESUMO

BACKGROUND: Immune compromised mice are increasingly used for the preclinical development of monoclonal antibodies (mAb). Most common are non-obese diabetic (NOD) severe combined immunodeficient (SCID) and their derivatives such as NOD SCID interleukin-2 γ-/- (NSG), which are attractive hosts for patient-derived xenografts. Despite their widespread use, the relative biological performance of mAb in these strains has not been extensively studied. METHODS: Clinically relevant mAb of various isotypes were administered to tumor and non-tumor-bearing SCID and NOD SCID mice and the mAb clearance monitored by ELISA. Expression analysis of surface proteins in both strains was carried out by flow cytometry and immunofluorescence microscopy. Further analysis was performed in vitro by surface plasmon resonance to assess mAb affinity for Fcγ receptors (FcγR) at pH 6 and pH 7.4. NOD SCID mice genetically deficient in different FcγR were used to delineate their involvement. RESULTS: Here, we show that strains on the NOD SCID background have significantly faster antibody clearance than other strains leading to reduced antitumor efficacy of clinically relevant mAb. This rapid clearance is dependent on antibody isotype, the presence of Fc glycosylation (at N297) and expression of FcγRII. Comparable effects were not seen in the parental NOD or SCID strains, demonstrating the presence of a compound defect requiring both genotypes. The absence of endogenous IgG was the key parameter transferred from the SCID as reconstituting NOD SCID or NSG mice with exogenous IgG overcame the rapid clearance and recovered antitumor efficacy. In contrast, the NOD strain was associated with reduced expression of the neonatal Fc Receptor (FcRn). We propose a novel mechanism for the rapid clearance of certain mAb isotypes in NOD SCID mouse strains, based on their interaction with FcγRII in the context of reduced FcRn. CONCLUSIONS: This study highlights the importance of understanding the limitation of the mouse strain being used for preclinical evaluation, and demonstrates that NOD SCID strains of mice should be reconstituted with IgG prior to studies of mAb efficacy.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Imunoglobulina G/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Neoplasias Experimentais/imunologia , Receptores de IgG/imunologia , Rituximab/farmacologia , Animais , Antineoplásicos Imunológicos/imunologia , Apoptose , Proliferação de Células , Modelos Animais de Doenças , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores de IgG/metabolismo , Rituximab/imunologia , Células Tumorais Cultivadas
7.
Cancer Cell ; 37(6): 850-866.e7, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32442402

RESUMO

Anti-CD40 monoclonal antibodies (mAbs) comprise agonists and antagonists, which display promising therapeutic activities in cancer and autoimmunity, respectively. We previously showed that epitope and isotype interact to deliver optimal agonistic anti-CD40 mAbs. The impact of Fc engineering on antagonists, however, remains largely unexplored. Here, we show that clinically relevant antagonists used for treating autoimmune conditions can be converted into potent FcγR-independent agonists with remarkable antitumor activity by isotype switching to hIgG2. One antagonist is converted to a super-agonist with greater potency than previously reported highly agonistic anti-CD40 mAbs. Such conversion is dependent on the unique disulfide bonding properties of the hIgG2 hinge. This investigation highlights the transformative capacity of the hIgG2 isotype for converting antagonists to agonists to treat cancer.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos CD40/imunologia , Ligante de CD40/imunologia , Células Dendríticas/imunologia , Switching de Imunoglobulina/imunologia , Imunoglobulina G/imunologia , Neoplasias/tratamento farmacológico , Animais , Anticorpos Monoclonais/imunologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células Dendríticas/efeitos dos fármacos , Switching de Imunoglobulina/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Receptores de IgE/fisiologia , Receptores de IgG/fisiologia , Neoplasias do Timo/tratamento farmacológico , Neoplasias do Timo/imunologia , Neoplasias do Timo/metabolismo , Neoplasias do Timo/patologia
8.
J Immunother Cancer ; 8(2)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33428585

RESUMO

BACKGROUND: Previous data suggests that anti-OX40 mAb can elicit anti-tumor effects in mice through deletion of Tregs. However, OX40 also has powerful costimulatory effects on T cells which could evoke therapeutic responses. Human trials with anti-OX40 antibodies have shown that these entities are well tolerated but to date have delivered disappointing clinical responses, indicating that the rules for the optimal use of anti-human OX40 (hOX40) antibodies is not yet fully understood. Changes to timing and dosages may lead to improved outcomes; however, here we focus on addressing the role of agonism versus depleting activity in determining therapeutic outcomes. We investigated a novel panel of anti-hOX40 mAb to understand how these reagents and mechanisms may be optimized for therapeutic benefit. METHODS: This study examines the binding activity and in vitro activity of a panel of anti-hOX40 antibodies. They were further evaluated in several in vivo models to address how isotype and epitope determine mechanism of action and efficacy of anti-hOX40 mAb. RESULTS: Binding analysis revealed the antibodies to be high affinity, with epitopes spanning all four cysteine-rich domains of the OX40 extracellular domain. In vivo analysis showed that their activities relate directly to two key properties: (1) isotype-with mIgG1 mAb evoking receptor agonism and CD8+ T-cell expansion and mIgG2a mAb evoking deletion of Treg and (2) epitope-with membrane-proximal mAb delivering more powerful agonism. Intriguingly, both isotypes acted therapeutically in tumor models by engaging these different mechanisms. CONCLUSION: These findings highlight the significant impact of isotype and epitope on the modulation of anti-hOX40 mAb therapy, and indicate that CD8+ T-cell expansion or Treg depletion might be preferred according to the composition of different tumors. As many of the current clinical trials using OX40 antibodies are now using combination therapies, this understanding of how to manipulate therapeutic activity will be vital in directing new combinations that are more likely to improve efficacy and clinical outcomes.


Assuntos
Isotipos de Imunoglobulinas/imunologia , Imunoterapia/métodos , Receptores OX40/imunologia , Animais , Feminino , Humanos , Camundongos
9.
Cancer Immunol Res ; 7(11): 1876-1890, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451483

RESUMO

Therapy-resistant microenvironments represent a major barrier toward effective elimination of disseminated cancer. Many hematologic and solid tumors are resistant to therapeutic antibodies in the bone marrow (BM), but not in the periphery (e.g., spleen). We previously showed that cyclophosphamide (CTX) sensitizes the BM niche to antibody therapeutics. Here, we show that (i) BM resistance was induced not only by the tumor but also by the intrinsic BM microenvironment; (ii) CTX treatment overcame both intrinsic and extrinsic resistance mechanisms by augmenting macrophage activation and phagocytosis, including significant upregulation of activating Fcγ receptors (FcγRIII and FcγRIV) and downregulation of the inhibitory receptor, FcγRIIB; and (iii) CTX synergized with cetuximab (anti-EGFR) and trastuzumab (anti-Her2) in eliminating metastatic breast cancer in the BM of humanized mice. These findings provide insights into the mechanisms by which CTX synergizes with antibody therapeutics in resistant niche-specific organs and its applicability in treating BM-resident tumors.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Medula Óssea/imunologia , Ciclofosfamida/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Receptores de IgG/genética , Animais , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Ciclofosfamida/imunologia , Ciclofosfamida/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoterapia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Receptores de IgG/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
10.
Front Immunol ; 10: 390, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30899264

RESUMO

Monoclonal antibody (mAb) immunotherapy has transformed the treatment of allergy, autoimmunity, and cancer. The interaction of mAb with Fc gamma receptors (FcγR) is often critical for efficacy. The genes encoding the low-affinity FcγR have single nucleotide polymorphisms (SNPs) and copy number variation that can impact IgG Fc:FcγR interactions. Leukocyte-based in vitro assays remain one of the industry standards for determining mAb efficacy and predicting adverse responses in patients. Here we addressed the impact of FcγR genetics on immune cell responses in these assays and investigated the importance of assay format. FcγR genotyping of 271 healthy donors was performed using a Multiplex Ligation-Dependent Probe Amplification assay. Freeze-thawed/pre-cultured peripheral blood mononuclear cells (PBMCs) and whole blood samples from donors were stimulated with reagents spanning different mAb functional classes to evaluate the association of FcγR genotypes with T-cell proliferation and cytokine release. Using freeze-thawed/pre-cultured PBMCs, agonistic T-cell-targeting mAb induced T-cell proliferation and the highest levels of cytokine release, with lower but measurable responses from mAb which directly require FcγR-mediated cellular effects for function. Effects were consistent for individual donors over time, however, no significant associations with FcγR genotypes were observed using this assay format. In contrast, significantly elevated IFN-γ release was associated with the FCGR2A-131H/H genotype compared to FCGR2A-131R/R in whole blood stimulated with Campath (p ≤ 0.01) and IgG1 Fc hexamer (p ≤ 0.05). Donors homozygous for both the high affinity FCGR2A-131H and FCGR3A-158V alleles mounted stronger IFN-γ responses to Campath (p ≤ 0.05) and IgG1 Fc Hexamer (p ≤ 0.05) compared to donors homozygous for the low affinity alleles. Analysis revealed significant reductions in the proportion of CD14hi monocytes, CD56dim NK cells (p ≤ 0.05) and FcγRIIIa expression (p ≤ 0.05), in donor-matched freeze-thawed PBMC compared to whole blood samples, likely explaining the difference in association between FcγR genotype and mAb-mediated cytokine release in the different assay formats. These findings highlight the significant impact of FCGR2A and FCGR3A SNPs on mAb function and the importance of using fresh whole blood assays when evaluating their association with mAb-mediated cytokine release in vitro. This knowledge can better inform on the utility of in vitro assays for the prediction of mAb therapy outcome in patients.


Assuntos
Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/genética , Síndrome da Liberação de Citocina/genética , Técnicas Imunológicas , Polimorfismo de Nucleotídeo Único , Receptores de IgG/genética , Anticorpos Monoclonais/farmacologia , Citocinas/biossíntese , Genótipo , Humanos , Leucócitos Mononucleares/imunologia , Receptores de IgG/imunologia
11.
Mol Ther Methods Clin Dev ; 13: 86-98, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30719487

RESUMO

While anti-angiogenic therapies for wet age-related macular degeneration (AMD) are effective for many patients, they require multiple injections and are expensive and prone to complications. Gene therapy could be an elegant solution for this problem by providing a long-term source of anti-angiogenic proteins after a single administration. Another potential issue with current therapeutic proteins containing a fragment crystallizable (Fc) domain (such as whole antibodies like bevacizumab) is the induction of an unwanted immune response. In wet AMD, a low level of inflammation is already present, so to avoid exacerbation of disease by the therapeutic protein, we propose single-chain fragment variable (scFv) antibodies, which lack the Fc domain, as a safer alternative. To investigate the feasibility of this, anti-vascular endothelial growth factor (VEGF)-blocking antibodies in two formats were produced and tested in vitro and in vivo. The scFv transgene was then cloned into an adeno-associated virus (AAV) vector. A therapeutic effect in a mouse model of choroidal neovascularization (CNV) was demonstrated with antibodies in both scFv and immunoglobulin G1 (IgG1) formats (p < 0.04). Importantly, the scFv anti-VEGF antibody expressed from an AAV vector also had a significant beneficial effect (p = 0.02), providing valuable preclinical data for future translation to the clinic.

12.
Immunity ; 49(5): 958-970.e7, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30446386

RESUMO

The costimulatory receptor 4-1BB is expressed on activated immune cells, including activated T cells. Antibodies targeting 4-1BB enhance the proliferation and survival of antigen-stimulated T cells in vitro and promote CD8 T cell-dependent anti-tumor immunity in pre-clinical cancer models. We found that T regulatory (Treg) cells infiltrating human or murine tumors expressed high amounts of 4-1BB. Intra-tumoral Treg cells were preferentially depleted by anti-4-1BB mAbs in vivo. Anti-4-1BB mAbs also promoted effector T cell agonism to promote tumor rejection. These distinct mechanisms were competitive and dependent on antibody isotype and FcγR availability. Administration of anti-4-1BB IgG2a, which preferentially depletes Treg cells, followed by either agonistic anti-4-1BB IgG1 or anti-PD-1 mAb augmented anti-tumor responses in multiple solid tumor models. An antibody engineered to optimize both FcγR-dependent Treg cell depleting capacity and FcγR-independent agonism delivered enhanced anti-tumor therapy. These insights into the effector mechanisms of anti-4-1BB mAbs lay the groundwork for translation into the clinic.


Assuntos
Anticorpos Monoclonais/farmacologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Imunomodulação/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores , Animais , Expressão Gênica , Humanos , Imunoglobulina G/farmacologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Camundongos Knockout , Neoplasias/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
13.
Cancer Cell ; 33(4): 664-675.e4, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29576376

RESUMO

Anti-CD40 monoclonal antibodies (mAbs) that promote or inhibit receptor function hold promise as therapeutics for cancer and autoimmunity. Rules governing their diverse range of functions, however, are lacking. Here we determined characteristics of nine hCD40 mAbs engaging epitopes throughout the CD40 extracellular region expressed as varying isotypes. All mAb formats were strong agonists when hyper-crosslinked; however, only those binding the membrane-distal cysteine-rich domain 1 (CRD1) retained agonistic activity with physiological Fc gamma receptor crosslinking or as human immunoglobulin G2 isotype; agonistic activity decreased as epitopes drew closer to the membrane. In addition, all CRD2-4 binding mAbs blocked CD40 ligand interaction and were potent antagonists. Thus, the membrane distal CRD1 provides a region of choice for selecting CD40 agonists while CRD2-4 provides antagonistic epitopes.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos CD40/química , Antígenos CD40/metabolismo , Epitopos/química , Anticorpos Monoclonais/química , Especificidade de Anticorpos , Antígenos CD40/agonistas , Ligante de CD40/metabolismo , Reagentes de Ligações Cruzadas , Humanos , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos
14.
Sci Rep ; 8(1): 2278, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396470

RESUMO

CD134 (OX40) is a member of the tumour necrosis factor receptor superfamily (TNFRSF). It acts as a costimulatory receptor on T cells, but its role on NK cells is poorly understood. CD137, another TNFRSF member has been shown to enhance the anti-tumour activity of NK cells in various malignancies. Here, we examine the expression and function of CD134 on human and mouse NK cells in B-cell lymphoma. CD134 was transiently upregulated upon activation of NK cells in both species. In contrast to CD137, induction of CD134 on human NK cells was dependent on close proximity to, or cell-to-cell contact with, monocytes or T cells. Stimulation with an agonistic anti-CD134 mAb but not CD134 ligand, increased IFNγ production and cytotoxicity of human NK cells, but this was dependent on simultaneous antibody:Fcγ receptor binding. In complementary murine studies, intravenous inoculation with BCL1 lymphoma into immunocompetent syngeneic mice resulted in transient upregulation of CD134 on NK cells. Combination treatment with anti-CD20 and anti-CD134 mAb produced a synergistic effect with durable remissions. This therapeutic benefit was abrogated by NK cell depletion and in Fcγ chain -/- mice. Hence, anti-CD134 agonists may enhance NK-mediated anti-tumour activity in an Fcγ receptor dependent fashion.


Assuntos
Anticorpos/metabolismo , Células Matadoras Naturais/imunologia , Linfoma de Células B/imunologia , Receptores OX40/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Adesão Celular , Células Cultivadas , Citotoxicidade Imunológica , Perfilação da Expressão Gênica , Humanos , Interferon gama/metabolismo , Camundongos , Monócitos/imunologia , Transplante de Neoplasias , Receptores OX40/análise , Linfócitos T/imunologia , Resultado do Tratamento
15.
Cancer Cell ; 32(6): 777-791.e6, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29198913

RESUMO

Monoclonal antibodies (mAbs) can destroy tumors by recruiting effectors such as myeloid cells, or targeting immunomodulatory receptors to promote cytotoxic T cell responses. Here, we examined the therapeutic potential of combining a direct tumor-targeting mAb, anti-CD20, with an extended panel of immunomodulatory mAbs. Only the anti-CD27/CD20 combination provided cures. This was apparent in multiple lymphoma models, including huCD27 transgenic mice using the anti-huCD27, varlilumab. Detailed mechanistic analysis using single-cell RNA sequencing demonstrated that anti-CD27 stimulated CD8+ T and natural killer cells to release myeloid chemo-attractants and interferon gamma, to elicit myeloid infiltration and macrophage activation. This study demonstrates the therapeutic advantage of using an immunomodulatory mAb to regulate lymphoid cells, which then recruit and activate myeloid cells for enhanced killing of mAb-opsonized tumors.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Linfoma/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Animais , Anticorpos Monoclonais Humanizados , Humanos , Imunoterapia/métodos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Camundongos , Camundongos Transgênicos
16.
Cancer Res ; 77(13): 3619-3631, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28512240

RESUMO

Tumors routinely attract and co-opt macrophages to promote their growth, angiogenesis, and metastasis. Macrophages are also the key effector cell for mAb therapies. Here we report that the tumor microenvironment creates an immunosuppressive signature on tumor-associated macrophages (TAM), which favors expression of inhibitory rather than activating Fcγ receptors (FcγR), thereby limiting the efficacy of mAb immunotherapy. We assessed a panel of TLR and STING agonists (a) for their ability to reprogram macrophages to a state optimal for mAb immunotherapy. Both STINGa and TLRa induced cytokine release, modulated FcγR expression, and augmented mAb-mediated tumor cell phagocytosis in vitro However, only STINGa reversed the suppressive FcγR profile in vivo, providing strong adjuvant effects to anti-CD20 mAb in murine models of lymphoma. Potent adjuvants like STINGa, which can improve FcγR activatory:inhibitory (A:I) ratios on TAM, are appealing candidates to reprogram TAM and curb tumor-mediated immunosuppression, thereby empowering mAb efficacy. Cancer Res; 77(13); 3619-31. ©2017 AACR.


Assuntos
Anticorpos Monoclonais/farmacologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Imunização Passiva/métodos , Linfoma/imunologia , Linfoma/terapia , Proteínas de Membrana/agonistas , Proteínas de Membrana/imunologia , Animais , Anticorpos Monoclonais/imunologia , Feminino , Humanos , Linfoma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Receptores de IgG/imunologia , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Immunol ; 198(10): 3999-4011, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28404636

RESUMO

Immunotherapy using mAbs, such as rituximab, is an established means of treating hematological malignancies. Abs can elicit a number of mechanisms to delete target cells, including complement-dependent cytotoxicity, Ab-dependent cellular cytotoxicity, and Ab-dependent cellular phagocytosis. The inherent properties of the target molecule help to define which of these mechanisms are more important for efficacy. However, it is often unclear why mAb binding to different epitopes within the same target elicits different levels of therapeutic activity. To specifically address whether distance from the target cell membrane influences the aforementioned effector mechanisms, a panel of fusion proteins consisting of a CD20 or CD52 epitope attached to various CD137 scaffold molecules was generated. The CD137 scaffold was modified through the removal or addition of cysteine-rich extracellular domains to produce a panel of chimeric molecules that held the target epitope at different distances along the protein. It was shown that complement-dependent cytotoxicity and Ab-dependent cellular cytotoxicity favored a membrane-proximal epitope, whereas Ab-dependent cellular phagocytosis favored an epitope positioned further away. These findings were confirmed using reagents targeting the membrane-proximal or -distal domains of CD137 itself before investigating these properties in vivo, where a clear difference in the splenic clearance of transfected tumor cells was observed. Together, this work demonstrates how altering the position of the Ab epitope is able to change the effector mechanisms engaged and facilitates the selection of mAbs designed to delete target cells through specific effector mechanisms and provide more effective therapeutic agents.


Assuntos
Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Membrana Celular/imunologia , Epitopos/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais Murinos/imunologia , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos CD20/genética , Antígenos CD20/imunologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Antígeno CD52 , Linhagem Celular Tumoral , Glicoproteínas/genética , Glicoproteínas/imunologia , Humanos , Imunoterapia , Camundongos , Fagocitose , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
18.
Rheumatology (Oxford) ; 56(7): 1227-1237, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28407142

RESUMO

Objective: A proportion of RA and SLE patients treated with standard doses of rituximab (RTX) display inefficient B cell deletion and poor clinical responses that can be augmented by delivering higher doses, indicating that standard-dose RTX is a sub-optimal therapy in these patients. This study aimed to investigate whether better responses could be achieved with mechanistically different anti-CD20 mAbs. Methods: We compared RTX with obinutuzumab (OBZ), a new-generation, glycoengineered type II anti-CD20 mAb, in a series of in vitro assays measuring B cell cytotoxicity in RA and SLE patient samples. Results: We found that OBZ was at least 2-fold more efficient than RTX at inducing B-cell cytotoxicity in in vitro whole blood assays. Dissecting this difference, we found that RTX elicited more potent complement-dependent cellular cytotoxicity than OBZ. In contrast, OBZ was more effective at evoking Fc gamma receptor-mediated effector mechanisms, including activation of NK cells and neutrophils, probably due to stronger interaction with Fc gamma receptors and the ability of OBZ to remain at the cell surface following CD20 engagement, whereas RTX became internalized. OBZ was also more efficient at inducing direct cell death. This was true for all CD19 + B cells as a whole and in naïve (IgD + CD27 - ) and switched (IgD - CD27 + ) memory B cells specifically, a higher frequency of which is associated with poor clinical response after RTX. Conclusion: Taken together, these data provide a mechanistic basis for resistance to rituximab-induced B-cell depletion, and for considering obinutuzumab as an alternative B-cell depleting agent in RA and SLE.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Apoptose/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Linfócitos B/efeitos dos fármacos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Rituximab/farmacologia , Adulto , Antirreumáticos/farmacologia , Artrite Reumatoide/sangue , Células Cultivadas , Feminino , Humanos , Técnicas In Vitro , Lúpus Eritematoso Sistêmico/sangue , Masculino , Pessoa de Meia-Idade , Receptores de IgG/efeitos dos fármacos , Receptores de IgG/metabolismo , Estudos de Amostragem , Estatísticas não Paramétricas , Adulto Jovem
19.
Cancer Immunol Res ; 4(7): 621-630, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27241845

RESUMO

Tumor cells dying after cytotoxic therapy are a potential source of antigen for T-cell priming. Antigen-presenting cells (APC) can cross-present MHC I-restricted peptides after the uptake of dying cells. Depending on the nature of the surrounding environmental signals, APCs then orchestrate a spectrum of responses ranging from immune activation to inhibition. Previously, we had demonstrated that combining radiation with either agonistic monoclonal antibody (mAb) to CD40 or a systemically administered TLR7 agonist could enhance CD8 T-cell-dependent protection against syngeneic murine lymphoma models. However, it remains unknown how individual APC populations affect this antitumor immune response. Using APC depletion models, we now show that dendritic cells (DC), but not macrophages or B cells, were responsible for the generation of long-term immunologic protection following combination therapy with radiotherapy and either agonistic CD40 mAb or systemic TLR7 agonist therapy. Novel immunotherapeutic approaches that augment antigen uptake and presentation by DCs may further enhance the generation of therapeutic antitumor immune responses, leading to improved outcomes after radiotherapy. Cancer Immunol Res; 4(7); 621-30. ©2016 AACR.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Imunoterapia , Ativação Linfocitária/imunologia , Neoplasias/imunologia , Radioterapia , Animais , Anticorpos Monoclonais/farmacologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Antígenos CD40/antagonistas & inibidores , Antígenos CD40/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos da radiação , Terapia Combinada , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Dendríticas/efeitos da radiação , Modelos Animais de Doenças , Depleção Linfocítica , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Fagocitose
20.
Clin Cancer Res ; 22(16): 4236-48, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27034329

RESUMO

PURPOSE: Cutaneous squamous cell carcinoma (cSCC) is the most common human cancer with metastatic potential. Despite T cells accumulating around cSCCs, these tumors continue to grow and persist. To investigate reasons for failure of T cells to mount a protective response in cSCC, we focused on regulatory T cells (Tregs) as this suppressive population is well represented among the infiltrating lymphocytes. EXPERIMENTAL DESIGN: Flow cytometry was conducted on cSCC lymphocytes and in vitro functional assays were performed using sorted tumoral T cells. Lymphocyte subsets in primary cSCCs were quantified immunohistochemically. RESULTS: FOXP3(+) Tregs were more frequent in cSCCs than in peripheral blood (P < 0.0001, n = 86 tumors). Tumoral Tregs suppressed proliferation of tumoral effector CD4(+) (P = 0.005, n = 10 tumors) and CD8(+) T cells (P = 0.043, n = 9 tumors) and inhibited IFNγ secretion by tumoral effector T cells (P = 0.0186, n = 11 tumors). The costimulatory molecule OX40 was expressed predominantly on tumoral Tregs (P < 0.0001, n = 15 tumors) and triggering OX40 with an agonist anti-OX40 antibody overcame the suppression exerted by Tregs, leading to increased tumoral effector CD4(+) lymphocyte proliferation (P = 0.0098, n = 10 tumors). Tregs and OX40(+) lymphocytes were more abundant in primary cSCCs that metastasized than in primary cSCCs that had not metastasized (n = 48 and n = 49 tumors, respectively). CONCLUSIONS: Tregs in cSCCs suppress effector T-cell responses and are associated with subsequent metastasis, suggesting a key role for Tregs in cSCC development and progression. OX40 agonism reversed the suppressive effects of Tregs in vitro, suggesting that targeting OX40 could benefit the subset of cSCC patients at high risk of metastasis. Clin Cancer Res; 22(16); 4236-48. ©2016 AACR.


Assuntos
Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/metabolismo , Receptores OX40/metabolismo , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Biomarcadores , Carcinoma de Células Escamosas/patologia , Humanos , Imuno-Histoquímica , Memória Imunológica , Imunomodulação , Imunofenotipagem , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Metástase Neoplásica , Fenótipo , Receptores OX40/agonistas , Neoplasias Cutâneas/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...