Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 41(3): 281-288, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11391466

RESUMO

The ACC deaminase structural gene (acdS) from Enterobacter cloacae UW4 was cloned in the broad host range plasmid pRK415 under the control of the lac promoter and transferred into Azospirillum brasilense Cd and Sp245. A. brasilenseCd and Sp245 transformants showed high ACC deaminase activity, similar to that observed in Enterobacter cloacae UW4. The expression of ACC deaminase improved the existing growth promoting activity of Azospirillum. The roots of tomato and canola seedlings were significantly longer in plants inoculated with A. brasilense Cd transformants than those in plants inoculated with the nontransformed strains of the same bacterium. In the case of wheat seedlings, inoculation with A. brasilense Cd transformants did not promote root growth. The difference in plant response (canola and tomato versus wheat) is attributed to the greater sensitivity of canola and tomato plants to ethylene as compared to wheat plants.

2.
J Plant Growth Regul ; 18(2): 49-53, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10552131

RESUMO

Mung bean cuttings were dipped in solutions of wild type and mutant forms of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 and then incubated for several days until roots formed. The bacteria P. putida GR12-2 and P. putida GR12-2/aux1 mutant do not produce detectable levels of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, whereas P. putida GR12-2/acd36 is an ACC deaminase minus mutant. All bacteria produce the phytohormone indole-3-acetic acid (IAA), and P. putida GR12-2/aux1 overproduces it. Treatment of cuttings with the above-mentioned bacteria affected the rates of ethylene production in the cuttings in a way that can be explained by the combined effects of the activity of ACC deaminase localized in the bacteria and bacterial produced IAA. P. putida GR12-2 and P. putida GR12-2/acd36-treated cuttings had a significantly higher number of roots compared with cuttings rooted in water. In addition, the wild type influenced the development of longer roots. P. putida GR12-2/aux1 stimulated the highest rates of ethylene production but did not influence the number of roots. These results are consistent with the notion that ethylene is involved in the initiation and elongation of adventitious roots in mung bean cuttings.

3.
Appl Environ Microbiol ; 64(10): 3663-8, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9758782

RESUMO

A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni2+, Pb2+, Zn2+, and CrO4-, produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride were partially protected against nickel toxicity. In addition, protection by the bacterium against nickel toxicity was evident in pot experiments with canola and tomato seeds. The presence of K. ascorbata SUD165 had no measurable influence on the amount of nickel accumulated per milligram (dry weight) of either roots or shoots of canola plants. Therefore, the bacterial plant growth-promoting effect in the presence of nickel was probably not attributable to the reduction of nickel uptake by seedlings. Rather, it may reflect the ability of the bacterium to lower the level of stress ethylene induced by the nickel.

4.
J Theor Biol ; 190(1): 63-8, 1998 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-9473391

RESUMO

It was previously shown that a number of plant growth promoting rhizobacteria contain an enzyme, 1-aminocyclopropane-1-carboxylate deaminase, that catalyses the cleavage of 1-aminocyclopropane-1-carboxylate, the immediate precursor of ethylene in plants. Moreover, experimental evidence indicated that the activity of this enzyme was the key factor in the ability of plant growth promoting rhizobacteria to stimulate the elongation of plant roots. In the model presented in this manuscript we address the question of how the bacterial enzyme 1-aminocyclopropane-1-carboxylate deaminase, with a low affinity for 1-aminocyclopropane-1-carboxylate, can effectively compete with the plant enzyme 1-aminocyclopropane-1-carboxylate oxidase, which has a high affinity for the same substrate, 1-aminocyclopropane-1-carboxylate, with the result that the plant's endogenous ethylene concentration is reduced. It is argued that the simplest explanation for the observed biological activity of plant growth promoting rhizobacteria relates to the relative amounts of 1-aminocyclopropane-1-carboxylate deaminase and 1-aminocyclopropane-1-carboxylate oxidase in the system under consideration. For plant growth promoting rhizobacteria to be able to lower plant ethylene levels, the 1-aminocyclopropane-1-carboxylate deaminase level should be at least 100- to 1000-fold greater then the 1-aminocyclopropane-1-carboxylate oxidase level. This is likely to be the case, provided that the expression of 1-aminocyclopropane-1-carboxylate oxidase has not been induced.Copyright 1998 Academic Press Limited Copyright 1998 Academic Press Limited

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...