Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Endocrinol ; 247(1): R27-R44, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32755997

RESUMO

The spotted hyaena (Crocuta crocuta) is a unique species, even amongst the Hyaenidae. Extreme clitoral development in female spotted hyaenas challenges aspects of the accepted framework of sexual differentiation and reproductive function. They lack a vulva and instead urinate, copulate and give birth through a single, long urogenital canal that traverses a clitoris superficially resembling a penis. Recent and historical evidence is reviewed to describe our changing understanding of the biology of this species. Expanding upon observations from hyaenas in nature, much has been learned from studies utilising the captive colony at the University of California, Berkeley. The steroid environment of pregnancy is shaped by placental androgen and oestrogen secretion and a late gestational increase in sex hormone binding globulin, the regulated expression and steroid-binding characteristics of which are unique within the Hyaenidae. While initial external genital development is largely free of androgenic influence, the increase in testosterone concentrations in late gestation influences foetal development. Specifically, anti-androgen (AA) treatment of pregnant females reduced the developmental influence of androgens on their foetuses, resulting in reduced androstenedione concentrations in young females and easier birth through a 'feminised' clitoris, but precluded intromission and mating by 'feminised' male offspring, and altered social interactions. Insight into the costs and benefits of androgen exposure on spotted hyaena reproductive development, endocrinology and behaviour emphasises the delicate balance that sustains reproductive success, forces a re-evaluation of how we define masculine vs feminine sexual characteristics, and motivates reflection about the representative value of model species.


Assuntos
Genitália Feminina , Genitália Masculina , Hormônios Esteroides Gonadais/fisiologia , Hyaenidae , Reprodução/fisiologia , Diferenciação Sexual/fisiologia , Androgênios/fisiologia , Animais , Estrogênios/fisiologia , Feminino , Genitália Feminina/anatomia & histologia , Genitália Feminina/embriologia , Genitália Feminina/crescimento & desenvolvimento , Genitália Masculina/anatomia & histologia , Genitália Masculina/embriologia , Genitália Masculina/crescimento & desenvolvimento , Hyaenidae/anatomia & histologia , Hyaenidae/embriologia , Hyaenidae/fisiologia , Masculino , Gravidez , Globulina de Ligação a Hormônio Sexual/fisiologia , Comportamento Sexual Animal/fisiologia
2.
Differentiation ; 111: 98-114, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31783219

RESUMO

The common view on penile development is that it is androgen-dependent, based first and foremost on the fact that the genital tubercle forms a penis in males and a clitoris in females. However, critical examination of the complex processes involved in human penile development reveals that many individual steps in development of the genital tubercle are common to both males and females, and thus can be interpreted as androgen-independent. For certain developmental events this conclusion is bolstered by observations in androgen-insensitive patients and androgen receptor mutant mice. Events in genital tubercle development that are common to human males and females include: formation of (a) the genital tubercle, (b) the urethral plate, (c) the urethral groove, (d) the glans, (e) the prepuce and (f) the corporal body. For humans 6 of 13 individual developmental steps in penile development were interpreted as androgen-independent. For mice 5 of 11 individual developmental steps were found to be androgen-independent, which were verified through analysis of androgen-insensitive mutants. Observations from development of external genitalia of other species (moles and spotted hyena) provide further examples of androgen-independent events in penile development. These observations support the counter-intuitive idea that penile development involves both androgen-independent and androgen-dependent processes.


Assuntos
Androgênios/metabolismo , Organogênese , Pênis/crescimento & desenvolvimento , Receptores Androgênicos/metabolismo , Animais , Humanos , Masculino , Pênis/metabolismo
3.
J Comp Neurol ; 498(1): 80-92, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16856162

RESUMO

The extreme virilization of the female spotted hyena raises interesting questions with respect to sexual differentiation of the brain and behavior. Females are larger and more aggressive than adult, non-natal males and dominate them in social encounters; their external genitalia also are highly masculinized. In many vertebrates, the arginine vasopressin (VP) innervation of the forebrain, particularly that of the lateral septum, is associated with social behaviors such as aggression and dominance. Here, we used immunohistochemistry to examine the distribution of VP cells and fibers in the forebrains of adult spotted hyenas. We find the expected densely staining VP immunoreactive (VP-ir) neurons in the paraventricular and supraoptic nuclei, as well as an unusually extensive distribution of magnocelluar VP-ir neurons in accessory regions. A small number of VP-ir cell bodies are present in the suprachiasmatic nucleus and bed nucleus of the stria terminalis; however, there are extensive VP-ir fiber networks in presumed projection areas of these nuclei, for example, the subparaventricular zone and lateral septum, respectively. No significant sex differences were detected in the density of VP-ir fibers in any area examined. In the lateral septum, however, marked variability was observed. Intact females exhibited a dense fiber network, as did two of the four males examined; the two other males had almost no VP-ir septal fibers. This contrasts with findings in many other vertebrate species, in which VP innervation of the lateral septum is consistently greater in males than in females.


Assuntos
Hyaenidae/anatomia & histologia , Hyaenidae/metabolismo , Prosencéfalo/anatomia & histologia , Prosencéfalo/metabolismo , Caracteres Sexuais , Vasopressinas/metabolismo , Agressão/fisiologia , Animais , Axônios/metabolismo , Feminino , Genitália Feminina/anatomia & histologia , Genitália Feminina/crescimento & desenvolvimento , Hierarquia Social , Hipotálamo/anatomia & histologia , Hipotálamo/metabolismo , Imuno-Histoquímica , Sistema Límbico/anatomia & histologia , Sistema Límbico/metabolismo , Masculino , Neurônios/metabolismo , Núcleos Septais/anatomia & histologia , Núcleos Septais/metabolismo , Diferenciação Sexual/fisiologia , Comportamento Social , Testosterona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...