Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 15(5)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35142345

RESUMO

Candida infections constitute a blind spot in global public health as very few new anti-fungal drugs are being developed. Genetic surveys of host susceptibilities to such infections using mammalian models have certain disadvantages in that obtaining results is time-consuming, owing to relatively long lifespans, and these results have low statistical resolution because sample sizes are usually small. Here, we report a targeted genetic screening of 5698 RNAi lines encompassing 4135 Drosophila genes with human homologues, several of which we identify as important for host survival after Candida albicans infection. These include genes in a variety of functional classes encompassing gene expression, intracellular signalling, metabolism and enzymatic regulation. Analysis of one of the screen hits, the infection-induced α-(1,3)-fucosylase FucTA, showed that N-glycan fucosylation has several targets among proteins involved in host defence, which provides multiple avenues of investigation for the mechanistic analysis of host survival to systemic C. albicans infection.


Assuntos
Candidíase , Drosophila , Animais , Candida albicans , Candidíase/genética , Candidíase/microbiologia , Testes Genéticos , Mamíferos , Interferência de RNA
2.
Dis Model Mech ; 4(4): 504-14, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21540241

RESUMO

Candida spp. are opportunistic pathogens in humans, and their systemic infections display upwards of 30% mortality in immunocompromised patients. Current mammalian model systems have certain disadvantages in that obtaining results is time consuming owing to the relatively long life spans and these results have low statistical resolution because sample sizes are usually small. We have therefore evaluated the potential of Drosophila melanogaster as an additional model system with which to dissect the host-pathogen interactions that occur during Candida albicans systemic infection. To do this, we monitored the survival of wild-type flies infected with various C. albicans clinical isolates that were previously ranked for murine virulence. From our lifetime data we computed two metrics of virulence for each isolate. These correlated significantly with murine survival, and were also used to group the isolates, and this grouping made relevant predictions regarding their murine virulence. Notably, differences in virulence were not predictably resolvable using immune-deficient spz(-/-) flies, suggesting that Toll signalling might actually be required to predictably differentiate virulence. Our analysis reveals wild-type D. melanogaster as a sensitive and relevant model system; one that offers immense genetic tractability (having an extensive RNA interference library that enables tissue-specific gene silencing), and that is easy to manipulate and culture. Undoubtedly, it will prove to be a valuable addition to the model systems currently used to study C. albicans infection.


Assuntos
Candida albicans/patogenicidade , Modelos Animais de Doenças , Drosophila melanogaster/microbiologia , Animais , Candida albicans/isolamento & purificação , Candidíase/microbiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Análise de Sobrevida , Virulência
3.
Dis Model Mech ; 4(4): 515-25, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21540243

RESUMO

Candida albicans systemic dissemination in immunocompromised patients is thought to develop from initial gastrointestinal (GI) colonisation. It is unclear what components of the innate immune system are necessary for preventing C. albicans dissemination from the GI tract, but studies in mice have indicated that both neutropenia and GI mucosal damage are crucial for allowing widespread invasive C. albicans disease. Mouse models, however, provide limited applicability to genome-wide screens for pathogen or host factors - factors that might influence systemic dissemination following GI colonisation. For this reason we developed a Drosophila model to study intestinal infection by Candida. We found that commensal flora aided host survival following GI infection. Candida provoked extensive JNK-mediated death of gut cells and induced antimicrobial peptide expression in the fat body. From the side of the host, nitric oxide and blood cells influenced systemic antimicrobial responses. The secretion of SAP4 and SAP6 (secreted aspartyl proteases) from Candida was also essential for activating systemic Toll-dependent immunity.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Drosophila melanogaster/imunologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade/imunologia , Animais , Candida albicans/enzimologia , Candidíase/patologia , Morte Celular , Drosophila melanogaster/microbiologia , Epitélio/patologia , Trato Gastrointestinal/patologia , Humanos , Larva/imunologia , Larva/microbiologia , Camundongos , Óxido Nítrico/metabolismo , Peptídeo Hidrolases/metabolismo , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...