Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38674993

RESUMO

This study presents a computational model to determine the wear behaviour of polymer gears. Using PrePoMax finite element numerical calculation software, a proposed computational model was built to predict dry rolling/sliding wear behaviour based on Archard's wear model. This allows the calculation of the wear depth in each loading cycle with constant mesh updating using the finite element method. The developed computational model has been evaluated on a spur gear pair, where the pinion made of POM was meshed with a support gear made of steel. The computational results obtained were compared with the analytical results according to the VDI 2736 guidelines. Based on this comparison, it was concluded that the proposed computational model could be used to simulate the wear behaviour of contacting mechanical elements like gears, bearings, etc. The main advantage of the model, if compared to the standardised procedure according to the VDI 2736 guidelines, is the geometry updating after a chosen number of loading cycles, which enables a more accurate prediction of wear behaviour under rolling/sliding loading conditions.

2.
Materials (Basel) ; 17(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38473528

RESUMO

In order to reduce the overall mass of the product, an improved variant of the engine oil suction pipe in hybrid design is developed and analysed as part of this paper. The vibration fatigue analysis of a simple all-metal suction pipe and the new hybrid suction pipe variant is derived using computer FEA simulations and vibration measurements on the shaker. The hybrid design of the technical components makes it possible to combine different types of materials in order to achieve the best possible properties and behaviours for the components under the influence of external loads. In our case, we combine a suction pipe made of S235JR mild steel with a 3D-printed polyamide intake funnel featuring a grid designed to prevent particles from entering the engine's lubrication circuit. This design reduces the mass and shifts the centre of gravity closer to the attachment point of the pipe, as well as to the engine crankcase, which has a positive effect on the values of natural frequencies and vibration amplitudes. The main objective of such a hybrid suction pipe is precisely to reduce vibrations, and thus extend the service life of the components.

3.
Polymers (Basel) ; 16(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38475360

RESUMO

A computational model for analysing the tooth deflection of polymer gears is presented in this paper. Because polymer gears have less stiffness compared to metal gears, the proposed approach considers a comprehensive analysis to determine the most suitable numerical model, i.e., the number of teeth that should be modelled for a given gear's geometry and material. The developed computational model has been evaluated using a spur gear pair, where the pinion made of POM was meshed with a support gear made of steel. Material properties were assigned with linear elastic characteristics for the gear, while the pinion was characterised by hyperelastic properties using POM material. Furthermore, a nonlubricated frictional contact between the gear and pinion was considered in the numerical computations. The computational results that were obtained were compared to the empirical results according to VDI 2736 guidelines. Here, the computational approach showed more accurate results due to the hyperelastic material characteristics of POM and the simulation of multiple teeth meshing. However, VDI 2736 calculation showed comparability with the computational results, with a slightly larger deviation at higher loads. In this respect, the proposed computational approach is more suitable for analysing the tooth deflection of polymer gears under higher loads.

4.
Materials (Basel) ; 17(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276418

RESUMO

The plate heat exchanger (PHE) is a component that provides heat to be transferred from hot water to domestic cold water without mixing them with high efficiency. Over the lifetime of the PHE, cyclic pressures act on the brazing points and the plates, and this may lead to fatigue failure. The fatigue behaviour of the PHE, designed using copper-brazed 316L stainless steel, was investigated in this study. First, the fatigue tests under the load ratio R = 0.1 were performed on the Vibrophore 100 testing machine to obtain the S-N curve of the analysed brazed joint. Based on the obtained experimental results, an appropriate material model of the analysed brazed joint has been created, which was validated with numerical calculation in the framework of a program code Ansys. A validated material model was then used for the subsequent numerical analysis of PHE. In order to carry out a numerical calculation using the finite element method (FEM), a three-dimensional model of the heat exchanger was created based on the previous scanning of PHE-geometry. Thereafter, the geometry was parameterised, which allowed us to perform parametric simulations (monitoring different responses depending on the input geometry). Numerical simulations were carried out in the framework of the Ansys 2023-R1 software, whereby the obtained results were analysed, and the responses were appropriately characterised according to previously determined load cases.

5.
Materials (Basel) ; 16(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37374549

RESUMO

This study presents a comprehensive analysis of different coating materials on the POM substrate. Specifically, it investigated physical vapour deposition (PVD) coatings of aluminium (Al), chromium (Cr), and chromium nitride (CrN) of three various thicknesses. The deposition of Al was accomplished through a three-step process, particularly plasma activation, metallisation of Al by magnetron sputtering, and plasma polymerisation. The deposition of Cr was attained using the magnetron sputtering technique in a single step. For the deposition of CrN, a two-step process was employed. The first step involved the metallisation of Cr using magnetron sputtering, while the second step involved the vapour deposition of CrN, obtained through the reactive metallisation of Cr and nitrogen using magnetron sputtering. The focus of the research was to conduct comprehensive indentation tests to obtain the surface hardness of the analysed multilayer coatings, SEM analyses to examine surface morphology, and thorough adhesion analyses between the POM substrate and the appropriate PVD coating.

6.
Materials (Basel) ; 16(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37048978

RESUMO

This study presents a comprehensive experimental investigation of the high-cycle fatigue (HCF) behaviour of the ductile aluminium alloy AA 5083-H111. The analysed specimens were fabricated in the rolling direction (RD) and transverse direction (TD). The HCF tests were performed in a load control (load ratio R = 0.1) at different loading levels under the loading frequency of 66 Hz up to the final failure of the specimen. The experimental results have shown that the S-N curves of the analysed Al-alloy consist of two linear curves with different slopes. Furthermore, RD-specimens demonstrated longer fatigue life if compared to TD-specimens. This difference was about 25% at the amplitude stress 65 MPa, where the average fatigue lives 276,551 cycles for RD-specimens, and 206,727 cycles for TD-specimens were obtained. Similar behaviour was also found for the lower amplitude stresses and fatigue lives between 106 and 108 cycles. The difference can be caused by large Al6(Mn,Fe) particles which are elongated in the rolling direction and cause higher stress concentrations in the case of TD-specimens. The micrography of the fractured surfaces has shown that the fracture characteristics were typical for the ductile materials and were similar for both specimen orientations.

7.
Polymers (Basel) ; 15(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772081

RESUMO

A comprehensive experimental investigation of the noise evaluation of coated spur polymer gears made of POM was performed in this study. The three Physical Vapour Deposition (PVD) coatings investigated were aluminium (Al), chromium (Cr), and chromium nitrite (CrN). The gears were tested on an in-house-developed testing machine under a torque of 20 Nm and at a rotational speed of 1000 rpm. The noise measurements were performed with the tested gear pair on the testing device with a sound-proof acoustic foam used for the acoustic sound-proof insulation. The sound signal was analysed in time, frequency, and time-frequency domains and typical phenomena were identified in the signal. Experimental results showed that the noise level was higher for polymer gears with different coatings if compared to the polymer gears without coatings. With sound analysis in the time-frequency domain, precise degradation of the coatings could be noticed. In future studies, it would be appropriate to use a new method for signal analysis, e.g., high-order statistics and hybrid technique.

8.
Polymers (Basel) ; 14(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36365742

RESUMO

A comprehensive experimental investigation of the wear behaviour of coated spur polymer gears made of POM is performed in this study. Three different thicknesses of aluminium (Al) coatings were investigated and deposited by the Physical Vapour Deposition (PVD) process. The Al coating was deposited in three steps: By plasma activation, metallisation of the aluminium by the magnetron sputtering process, and plasma polymerisation. The wear of the gears was tested on an in-house developed testing rig for different torques (16, 20, and 24 Nm) and a rotational speed of 1000 rpm. The duration of the experiments was set to 13 h, when the tooth thickness and, consequently, the wear of the tooth flank were recorded. The experimental results showed that the influence of metallisation with aluminium surface coatings on the wear behaviour of the analysed polymer gear is not significantly important. The results also showed that the gears with a thicker aluminium coating showed greater wear than gears with a thinner coating or even without a coating. This is probably due to the fact that the aluminium particles that started to deviate during gear operation represented the abrasive material, which led to the faster wear of the contacting surfaces of the meshing gear flanks.

9.
Polymers (Basel) ; 14(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35160427

RESUMO

In this study, an acoustic behaviour of S-polymer gears made of the material combination POM/PA66 was investigated and compared to the standardised involute gears (E-gears). Basic evaluating characteristics included noise during operation, which is of particular significance when noise reduction is expected. The measured signals were analysed in time and frequency domains and the levels of acoustic activity were compared. The experimental results have shown that the sound pressure level of both E- and S-polymer gears are proportional to the torque. However, the comprehensive noise evaluation has shown some advantages of S-polymer gears if compared to the E-polymer gears. In that respect, S-polymer gears were found more appropriate for noise reduction of gear drive systems in the case of normal loading and typical drive speed. Future studies in the operating behaviour of S-polymer gears could also cover noise evaluation using new methods of sound signal analysis at different temperatures of gears.

10.
Materials (Basel) ; 14(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34683608

RESUMO

Bioresorbable stents (BRS) represent the latest generation of vascular scaffolds used for minimally invasive interventions. They aim to overcome the shortcomings of established bare-metal stents (BMS) and drug-eluting stents (DES). Recent advances in the field of bioprinting offer the possibility of combining biodegradable polymers to produce a composite BRS. Evaluation of the mechanical performance of the novel composite BRS is the focus of this study, based on the idea that they are a promising solution to improve the strength and flexibility performance of single material BRS. Finite element analysis of stent crimping and expansion was performed. Polylactic acid (PLA) and polycaprolactone (PCL) formed a composite stent divided into four layers, resulting in sixteen unique combinations. A comparison of the mechanical performance of the different composite configurations was performed. The resulting stresses, strains, elastic recoil, and foreshortening were evaluated and compared to existing experimental results. Similar behaviour was observed for material configurations that included at least one PLA layer. A pure PCL stent showed significant elastic recoil and less shortening compared to PLA and composite structures. The volumetric ratio of the materials was found to have a more significant effect on recoil and foreshortening than the arrangement of the material layers. Composite BRS offer the possibility of customising the mechanical behaviour of scaffolds. They also have the potential to support the fabrication of personalised or plaque-specific stents.

11.
Polymers (Basel) ; 13(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34685347

RESUMO

A comprehensive experimental investigation of the wear behaviour of coated spur polymer gears made of POM is performed in this study. The three physical vapour deposition (PVD) coatings investigated were aluminium (Al), chromium (Cr), and chromium nitrite (CrN). Al was deposited in three process steps: By plasma activation, metallisation of Al by the magnetron sputtering process, and by plasma polymerisation. Cr deposition was performed in only one step, namely, the metallization of Cr by the magnetron sputtering process. The deposition of CrN was carried out in two steps: the first involved the metallization of Cr by the magnetron sputtering process while the second step, vapour deposition, involved the reactive metallisation of Cr with nitrogen, also by the magnetron sputtering process. The gears were tested on an in-house developed testing rig for different torques (16, 20, 24 and 30 Nm) and rotational speed of 1000 rpm. The duration of the experiments was set to 13 h, when the tooth thickness, and, consequently, the wear of the tooth flank was recorded. The experimental results showed that the influence of metallisation with aluminium, chromium, and chromium nitrite surface coatings on the wear behaviour of the analysed polymer gear is not significant. This is probably due to the fact that the analysed coatings were, in all cases, very thin (less than 500 nm), and therefore did not influence the wear resistance significantly. In that respect, an additional testing using thicker coatings should be applied in the further research work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...