Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(13): 12565-12572, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033828

RESUMO

Protonation of cyclopropanes and aziridines is well-studied, but reactions of phosphiranes with acids are rare and have not been reported to result in ring opening. Treatment of syn-Mes*PCH2CHR (Mes* = 2,4,6-(t-Bu)3C6H2, R = Me or Ph, syn-1-2) or anti-Mes*PCH2CHPh (anti-2) with triflic acid resulted in regiospecific anti-Markovnikov C-protonation with ring opening and cyclophosphination of a Mes* ortho-t-Bu group to yield the phospholanium cations [PH(CH2CH2R)(4,6-(t-Bu)2-2-CMe2CH2C6H2)][OTf] (R = Me or Ph, 3-4), which were deprotonated with NEt3 to give phospholanes 5-6. Enantioenriched or racemic syn-1 both gave racemic 3. The byproduct [Mes*PH(CH2CH2Me)(OH)][OTf] (7) was formed from syn-1 and HOTf in the presence of water. Density functional theory calculations suggested that P-protonation followed by ring opening and hydride migration to C yields the phosphenium ion, [Mes*P(CH2CH2Me)][OTf], which undergoes C-H oxidative addition of an o-t-Bu methyl group. This work established a new reactivity pattern for phosphiranes.

2.
Angew Chem Int Ed Engl ; 61(1): e202110753, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34755431

RESUMO

Tetrahedral main-group compounds are normally configurationally stable, but P-epimerization of the chiral phosphiranium cations syn- or anti-[Mes*P(Me)CH2 CHPh][OTf] (Mes*=2,4,6-(t-Bu)3 C6 H2 ) occurred under mild conditions at 60 °C in CD2 Cl2 , resulting in isomerization to give a syn-enriched equilibrium mixture. Ion exchange with excess [NBu4 ][Δ-TRISPHAT] (Δ-TRISPHAT=Δ-P(o-C6 Cl4 O2 )3 ) followed by chromatography on silica removed [NBu4 ][OTf] and gave mixtures of syn- and anti-[Mes*P(Me)CH2 CHPh][Δ-TRISPHAT]⋅x[NBu4 ][Δ-TRISPHAT]. NMR spectroscopy showed that isomerization proceeded with epimerization at P and retention at C. DFT calculations are consistent with a mechanism involving P-C cleavage to yield a hyperconjugation-stabilized carbocation, pyramidal inversion promoted by σ-interaction of the P lone pair with the neighboring ß-carbocation, and ring closure with inversion of configuration at P.

3.
Dalton Trans ; 50(44): 15953-15960, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34643205

RESUMO

Hydration of nitriles is catalyzed by the enzyme nitrile hydratase, with iron or cobalt active sites, and by a variety of synthetic metal complexes. This Perspective focuses on parallels between the reaction mechanism of the enzyme and a class of particularly active catalysts bearing secondary phosphine oxide (SPO) ligands. In both cases, the key catalytic step was proposed to be intramolecular attack on a coordinated nitrile, with either an S-OH or S-O- (enzyme) or a P-OH (synthetic) nucleophile. Attack of water on the heteroatom (S or P) in the resulting metallacycle and proton transfer yields the amide and regenerates the catalyst. Evidence for this mechanism, its relevance to the formation of related metallacycles, and its potential for design of more active catalysts for nitrile hydration is summarized.

4.
J Org Chem ; 85(22): 14516-14526, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32627554

RESUMO

Kinetic separation of the commercially available cis/trans-(+)-limonene oxide mixture by ring opening with primary phosphido nucleophiles LiPHR (R = ferrocenyl, Ph, Cy, t-Bu, Mes* (Mes* = 2,4,6-(t-Bu)3C6H2)), followed by treatment with aqueous NH4Cl and H2O2, gave unreacted cis-(+)-limonene oxide and diastereoenriched mixtures of the secondary phosphine oxides (SPOs) PHR(trans-(+)-Lim-OH)(O), which could be separated by chromatography and/or recrystallization. This one-pot synthesis uses a cheap chiral material and commercially available primary phosphines to control the configuration of the new P-stereogenic SPOs, which are potentially useful as ligands for metal complexes in asymmetric catalysis.

5.
J Org Chem ; 85(22): 14276-14285, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32458683

RESUMO

Metal-catalyzed addition of P-H bonds to alkenes, alkynes, and other unsaturated substrates in hydrophosphination and related reactions is an atom-economical approach to valuable organophosphorus compounds. Understanding the mechanisms of these processes may enable synthetic improvements and development of new reactions. The first step in several catalytic cycles is P-H oxidative addition to yield intermediate metal hydride complexes bearing M-P bonds. P-C bond formation may occur via substrate insertion into the M-H bond, followed by P-C reductive elimination, or by insertion into the M-P bond and C-H reductive elimination. In an alternative outer-sphere process, nucleophilic attack of a metal-phosphido (M-PR2) group on an unsaturated substrate and proton transfer involving the metal hydride yields the product. This Perspective reviews the mechanistic possibilities, with a focus on the P-H activation step, and recent progress in developing novel catalytic transformations involving P-C bond formation.

6.
Inorg Chem ; 58(13): 8854-8865, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31247872

RESUMO

Diastereoselective coordination of racemic secondary phosphines (PHRR') to Cu(I) precursors containing chiral bis(phosphines) (diphos*) was explored as a potential route to P-stereogenic phosphido complexes. Reaction of [Cu(NCMe)4][PF6] with chiral bis(phospholanes) gave [Cu(diphos*)2][PF6] (diphos* = ( R, R)-Me-DuPhos (1), ( R, R)-Et-DuPhos (2), or ( R, R)-Me-FerroLANE) (3)) or the mono(chelates) [Cu(diphos*)(NCMe) n][PF6] (diphos* = ( R, R)- i-Pr-DuPhos, n = 2 (4); diphos* = ( R, R)-Me-FerroLANE, n = 1 (5)). Treatment of [Cu(NCMe)4][PF6] with diphos* and PHMe(Is) (Is = 2,4,6-( i-Pr)3C6H2) gave mixtures of diastereomers of [Cu(( R, R)- i-Pr-DuPhos)(PHMe(Is))(NCMe)][PF6] (6) and [Cu(( R, R)-Me-FerroLANE)(PHMe(Is))][PF6] (7); two of the three expected isomers of the bis(secondary phosphine) complexes [Cu(( R, R)- i-Pr-DuPhos)(PhHP(CH2) nPHPh)][PF6] ( n = 2 (8); n = 3 (9)) were formed preferentially in related reactions. Reaction of the halide-bridged dimers [Cu(( R, R)- i-Pr-DuPhos)(X)]2 or [Cu(( R, R)-Me-FerroLANE)(I)]2 with PHMe(Is) gave the labile adducts Cu(( R, R)- i-Pr-DuPhos)(PHMe(Is))(X) (X = Cl (10), Br (11), I (12)) and Cu(( R, R)-Me-FerroLANE)(PHMe(Is))(I) (13). Complexes 1, 6, and 8-11 were structurally characterized by X-ray crystallography. Variable temperature NMR studies of 6 and 8 showed that the secondary phosphine ligands underwent reversible dissociation. Deprotonation of 6 or 7 generated the P-stereogenic phosphido complexes Cu(diphos*)(PMeIs) (diphos* = ( R, R)- i-Pr-DuPhos (14) or ( R, R)-Me-FerroLANE) (17)), observed by 31P NMR spectroscopy, but decomposition also occurred. Density functional theory calculations were used to characterize the diastereomers of thermally unstable 17 and the inversion barrier in a model copper-phosphido complex. These observations provided structure-property relationships which may be useful in developing catalytic asymmetric reactions involving secondary phosphines and P-stereogenic copper phosphido intermediates.

7.
Angew Chem Int Ed Engl ; 57(18): 5047-5051, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29484790

RESUMO

Nucleophilic substitution results in inversion of configuration at the electrophilic carbon center (SN 2) or racemization (SN 1). The stereochemistry of the nucleophile is rarely considered, but phosphines, which have a high barrier to pyramidal inversion, attack electrophiles with retention of configuration at P. Surprisingly, cyclization of bifunctional secondary phosphine alkyl tosylates proceeded under mild conditions with inversion of configuration at the nucleophile to yield P-stereogenic syn-phosphiranes. DFT studies suggested that the novel stereochemistry results from acid-promoted tosylate dissociation to yield an intermediate phosphenium-bridged cation, which undergoes syn-selective cyclization.

8.
Inorg Chem ; 56(21): 12809-12820, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29064687

RESUMO

For investigation of structure-property relationships in copper phosphine halide complexes, treatment of copper(I) halides with chiral bis(phosphines) gave dinuclear [Cu((R,R)-i-Pr-DuPhos)(µ-X)]2 [X = I (1), Br (2), Cl (3)], [Cu(µ-((R,R)-Me-FerroLANE)(µ-I)]2 (5), and [Cu((S,S)-Et-FerroTANE)(I)]2 (6), pentanuclear cluster Cu5I5((S,S)-Et-FerroTANE)3 (7), and the monomeric Josiphos complexes Cu((R,S)-CyPF-t-Bu)(I) (8) and Cu((R,S)-PPF-t-Bu)(I) (9); 1-3, 5, and 7-9 were structurally characterized by X-ray crystallography. Treatment of iodide 1 with AgF gave [Cu((R,R)-i-Pr-DuPhos)(µ-F)]2 (4). DuPhos complexes 1-4 emitted yellow-green light upon UV irradiation at room temperature in the solid state. This process was studied by low-temperature emission spectroscopy and density functional theory (DFT) calculations, which assigned the luminescence to (M + X)LCT (Cu2X2 to DuPhos aryl) excited states. Including Grimme's dispersion corrections in the DFT calculations (B3LYP-D3) gave significantly shorter Cu-Cu distances than those obtained using B3LYP, with the nondispersion-corrected calculations better matching the crystallographic data; other intramolecular metrics are better reproduced using B3LYP-D3. A discussion of the factors leading to this unusual observation is presented.

9.
Dalton Trans ; 44(21): 9943-54, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25952152

RESUMO

Metal-mediated synthesis of a new heterocycle, 1-phenyl-phosphapyracene (Ph-4, Ph-PyraPhos), by tandem phosphination/cyclization of peri-substituted 5-bromo-6-chloromethylacenaphthene (3) was investigated for comparison to Pt-catalyzed formation of 1-phosphaacenaphthenes (2, AcePhos) from the analogous naphthalene precursor (1). Reaction of PH2Ph with , NaOSiMe3 and a Cu catalyst gave ; a Pt catalyst yielded PHPh(CH2Ar) (Ph-11, Ar = 5-Br-acenaphthyl). Deprotonation of a complex of this secondary phosphine, [Pt((R,R)-Me-DuPhos)(Ph)(PHPh(CH2Ar))][PF6] (17), generated the phosphido intermediate Pt((R,R)-Me-DuPhos)(Ph)(PPhCH2Ar) (Ph-8), which cyclized to give [Pt((R,R)-Me-DuPhos)(Ph)(Ph-PyraPhos)][PF6] (18). Treatment of P-8 with silver triflate gave 18 and the cyclometalated phosphine complex [Pt((R,R)-Me-DuPhos)(κ(2)-(P,C)-5-Ph2PCH2-6-C12H8)][PF6] (21), which might form via Pt(iv) intermediates. The effects of the added "ace" bridge on structure and reactivity are discussed.

10.
Org Lett ; 14(16): 4238-41, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22870878

RESUMO

Although the pyramidal inversion barriers in diphosphines (R(2)P-PR(2)) are similar to those in phosphines (PR(3)), P-stereogenic chiral diphosphines have rarely been exploited as building blocks in asymmetric synthesis. The synthesis, reactivity, and resolution of the benzodiphosphetane trans-1,2-(P(t-Bu))(2)C(6)H(4) are reported. Alkylation with MeOTf followed by addition of a nucleophile gave the useful C(2)-symmetric P-stereogenic ligand BenzP* and novel analogues.

11.
Inorg Chem ; 49(17): 7650-62, 2010 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-20617815

RESUMO

Cu(I) catalysts for alkylation of diphenylphosphine were developed. Treatment of [Cu(NCMe)(4)][PF(6)] (1) with chelating ligands gave [CuL(NCMe)][PF(6)] (2; L = MeC(CH(2)PPh(2))(3) (triphos), 3; L = 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene (XantPhos)). These complexes catalyzed the alkylation of PHPh(2) with PhCH(2)Br in the presence of the base NaOSiMe(3) to yield PPh(2)CH(2)Ph (4). The precursors Cu(dtbp)(X) (dtbp =2,9-di-t-butylphenanthroline, X = Cl (5) or OTf (6)), CuCl, and 1 also catalyzed this reaction, but dtbp dissociated from 5 and 6 during catalysis. Both 2 and 3 also catalyzed alkylation of PHPh(2) with PhCH(2)Cl/NaOSiMe(3), but XantPhos dissociation was observed when 3 was used. When CH(2)Cl(2) was used as the solvent for alkylation of PhCH(2)Cl with precursors 2 or 3, or of PhCH(Me)Br with 2, it was competitively alkylated to yield PPh(2)CH(2)Cl (7), which was formed exclusively using 2 in the absence of a benzyl halide. Cu(triphos)-catalyzed alkylation of PhCH(Me)Br gave mostly PPh(2)CHMePh (8), along with some Ph(2)P-PPh(2) (9), which was also formed in attempted alkylation of dibromoethane with this catalyst. The phosphine complexes [Cu(triphos)(L')][PF(6)] (L' = PH(2)Ph (10), PH(2)CH(2)Fc (Fc = C(5)H(4)FeC(5)H(5), 11), PHPh(2) (12), PHEt(2) (13), PHCy(2) (Cy = cyclo-C(6)H(11), 14), PHMe(Is) (Is = 2,4,6-(i-Pr)(3)C(6)H(2), 15), PPh(2)CH(2)Ph (16), PPh(2)CH(2)Cl (17)), and [Cu(XantPhos)(L')][PF(6)] (L' = PHPh(2) (18), PPh(2)CH(2)Ph (19)) were prepared by treatment of 2 and 3 with appropriate ligands. Similarly, treatment of dtbp complexes 5 or 6 with PHPh(2) gave [Cu(dtbp)(PHPh(2))(X)] (X = OTf (20a) or Cl (20b)), and reaction of PPh(2)CH(2)Ph (4) with 1 formed [Cu(PPh(2)CH(2)Ph)(3)][PF(6)] (21). Complexes 2, 3, 11-14, 16, 17, 19, and 21 were structurally characterized by X-ray crystallography. Deprotonation of diphenylphosphine complex 12 in the presence of benzyl bromide gave diphenylbenzylphosphine complex 16, while deprotonation of 12 in CD(2)Cl(2) gave 17 containing a PPh(2)CD(2)Cl ligand. Low-temperature deprotonation of the soluble salt 12-[B(Ar(F))(4)] (Ar(F) = 3,5-(CF(3))(2)C(6)H(3)) in THF-d(8) gave the phosphido complex Cu(triphos)(PPh(2)) (22). Thermally unstable 22 was characterized by NMR spectroscopy and, in comparison to 12, by density functional theory (DFT) calculations, which showed it contained a polarized Cu-P bond. The ligand substitution step required for catalytic turnover was observed on treatment of 16 or 17 with PHPh(2) to yield equilibrium mixtures containing 12 and the tertiary phosphines 4 or 7; equilibrium constants for these reactions were 8(2) and 7(2), favoring complexation of the smaller secondary phosphine in both cases. These observations are consistent with a proposed mechanism for catalytic P-C bond formation involving deprotonation of the cationic diphenylphosphine complex [Cu(triphos)(PHPh(2))][PF(6)] (12) by NaOSiMe(3) to yield the phosphido complex Cu(triphos)(PPh(2)) (22). Nucleophilic attack on the substrate (benzyl halide or CH(2)Cl(2)) then yields the tertiary phosphine complex [Cu(triphos)(PPh(2)CH(2)X)][PF(6)] (X = Ph (16) or Cl (17)), and ligand substitution with PHPh(2) regenerates 12.

12.
Inorg Chem ; 49(8): 3950-7, 2010 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-20232831

RESUMO

Treatment of 2 equiv of Au(THT)Cl (THT = tetrahydrothiophene) with the bis(secondary) phosphines HP(R) approximately PH(R) (linker approximately = (CH(2))(3), R = Mes = 2,4,6-Me(3)C(6)H(2) (1), R = Is = 2,4,6-(i-Pr)(3)C(6)H(2) (2), R = Ph (4); approximately = (CH(2))(2), R = Is (3); HP(R) approximately PH(R) = 1,1'-(eta(5)-C(5)H(4)PHPh)(2)Fe (5)), gave the dinuclear complexes (AuCl)(2)(mu-HP(R) approximately PH(R)) (6-10). Dehydrohalogenation with aqueous ammonia gave the phosphido complexes [(Au)(2)(mu-P(R) approximately P(R))](n) (11-15). Ferrocenyl- and phenylphosphido derivatives 15 and 14 were insoluble; the latter was characterized by solid-state (31)P NMR spectroscopy. Isitylphosphido complexes 12 and 13 gave rise to broad, ill-defined NMR spectra. However, mesitylphosphido complex 11 was formed as a single product, which was characterized by multinuclear solution NMR spectroscopy, solid-state (31)P NMR spectroscopy, and elemental analyses. Mass spectrometry suggested that this material contained eight gold atoms (n = 4). A structure proposed on the basis of the (1)H NMR spectra, containing a distorted cube of phosphorus atoms, was confirmed by X-ray crystallographic structure determination. NMR spectroscopy, including measurement of the hydrodynamic radius of 11 by (1)H NMR DOSY, suggested that this structure was maintained in solution. Density functional theory (DFT) structural calculations on 11 were also in good agreement with the solid-state structure.

13.
Dalton Trans ; (39): 5276-86, 2008 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-18827932

RESUMO

Many important reactions that lead to carbon-heteroatom bond formation involve attack of anionic heteroatom nucleophiles, such as hydroxides, alkoxides, amides, thiolates and phosphides, at carbon. Related catalytic transformations are mediated by late transition metal complexes of these groups, which remain nucleophilic on metal coordination as a result of repulsive filled-filled interactions between the heteroatom lone pairs and metal d-orbitals and/or of polarization of the bonds Mdelta+-Xdelta-. This Perspective presents examples of catalytic nucleophilic C-X bond formation in both biological and synthetic systems and describes how changes in the metal, ancillary ligands and X groups may be used to tune nucleophilic reactivity.

14.
Org Lett ; 10(20): 4425-8, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18808136

RESUMO

Enantioselective tandem alkylation/arylation of primary phosphines with 1-bromo-8-chloromethylnaphthalene catalyzed by Pt(DuPhos) complexes gave P-stereogenic 1-phosphaacenaphthenes (AcePhos) in up to 74% ee. Diastereoselective formation of four P-C bonds in one pot with bis(primary) phosphines gave C2-symmetric diphosphines, including the o-phenylene derivative DuAcePhos, for which the rac isomer was formed with high enantioselectivity. These reactions, which appear to proceed via an unusual metal-mediated nucleophilic aromatic substitution pathway, yield a new class of heterocycles with potential applications in asymmetric catalysis.

15.
Chemistry ; 14(24): 7108-17, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18491333

RESUMO

Chiral phosphanes, important ligands for metal-catalyzed asymmetric syntheses, are often prepared with compounds from the chiral pool, by using stoichiometric chiral auxiliaries, or by resolution. In some cases, this class of valuable compounds can be prepared more efficiently by catalytic asymmetric synthesis. This Concepts article presents an overview of these synthetic methods, including recent advances in catalysis by metal complexes, biocatalysis, organocatalysis, and ligand-accelerated catalysis.

16.
J Am Chem Soc ; 129(21): 6847-58, 2007 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-17474744

RESUMO

Asymmetric cross-coupling of aryl iodides (ArI) with secondary arylphosphines (PHMe(Ar'), Ar' = (2,4,6)-R3C6H2; R = i-Pr (Is), Me (Mes), Ph (Phes)) in the presence of the base NaOSiMe3 and a chiral Pd catalyst precursor, such as Pd((R,R)-Me-Duphos)(trans-stilbene), gave the tertiary phosphines PMe(Ar')(Ar) in enantioenriched form. Sterically demanding secondary phosphine substituents (Ar') and aryl iodides with electron-donating para substituents resulted in the highest enantiomeric excess, up to 88%. Phosphination of ortho-substituted aryl iodides required a Pd(Et-FerroTANE) catalyst but gave low enantioselectivity. Observations during catalysis and stoichiometric studies of the individual steps suggested a mechanism for the cross-coupling of PhI and PHMe(Is) (1) initiated by oxidative addition to Pd(0) yielding Pd((R,R)-Me-Duphos)(Ph)(I) (3). Reversible displacement of iodide by PHMe(Is) gave the cation [Pd((R,R)-Me-Duphos)(Ph)(PHMe(Is))][I] (4), which was isolated as the triflate salt and crystallographically characterized. Deprotonation of 4-OTf with NaOSiMe3 gave the phosphido complex Pd((R,R)-Me-Duphos)(Ph)(PMeIs) (5); an equilibrium between its diastereomers was observed by low-temperature NMR spectroscopy. Reductive elimination of 5 yielded different products depending on the conditions. In the absence of a trap, the unstable three-coordinate phosphine complex Pd((R,R)-Me-Duphos)(PMeIs(Ph)) (6) was formed. Decomposition of 5 in the presence of PhI gave PMeIs(Ph) (2) and regenerated 3, while trapping with phosphine 1 during catalysis gave Pd((R,R)-Me-Duphos)(PHMe(Is))2 (7), which reacted with PhI to give 3. Deprotonation of 1:1 or 1.4:1 mixtures of cations 4-OTf gave the same 6:1 ratio of enantiomers of PMeIs(Ph) (2), suggesting that the rate of P inversion in 5 was greater than or equal to the rate of reductive elimination. Kinetic studies of the first-order reductive elimination of 5 were consistent with a Curtin-Hammett-Winstein-Holness (CHWH) scheme, in which pyramidal inversion at the phosphido ligand was much faster than P-C bond formation. The absolute configuration of the phosphine (SP)-PMeIs(p-MeOC6H4) was determined crystallographically; NMR studies and comparison to the stable complex 5-Pt were consistent with an RP-phosphido ligand in the major diastereomer of the intermediate Pd((R,R)-Me-Duphos)(Ph)(PMeIs) (5). Therefore, the favored enantiomer of phosphine 2 appeared to be formed from the major diastereomer of phosphido intermediate 5, although the minor intermediate diastereomer underwent P-C bond formation about three times more rapidly. The effects of the diphosphine ligand, the phosphido substituents, and the aryl group on the ratio of diastereomers of the phosphido intermediates Pd(diphos*)(Ar)(PMeAr'), their rates of reductive elimination, and the formation of three-coordinate complexes were probed by low-temperature 31P NMR spectroscopy; the results were also consistent with the CHWH scheme.

17.
Org Lett ; 9(6): 1109-12, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17298077

RESUMO

Enantioselective or diastereoselective intramolecular cyclization of functionalized secondary phosphines or their borane adducts catalyzed by chiral Pd(diphosphine) complexes gave P-stereogenic benzophospholanes in up to 70% ee. These results provide a new method for the synthesis of chiral phospholanes, which are valuable ligands in asymmetric catalysis. [reaction: see text]

18.
J Am Chem Soc ; 128(9): 2788-9, 2006 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-16506743

RESUMO

The chiral Pt catalyst precursor Pt((R,R)-Me-Duphos)(Ph)(Cl) mediated alkylation of racemic secondary phosphines PHR(R') with benzyl halides in the presence of base to give enantioenriched tertiary phosphines PR(R')(CH2Ar). Similar reactions of bis(secondary) phosphines yielded chiral diphosphines in up to 93% ee and with good rac/meso diastereoselection.

19.
Langmuir ; 20(24): 10379-81, 2004 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-15544362

RESUMO

Gold-phosphido-monolayer-protected clusters (MPCs) of 1-2-nm diameter, Au(x)(PR2)y, analogues of the well-known thiolate materials Au(x)(SR)y, were prepared by NaBH4 reduction of a mixture of HAuCl4.3H2O and a secondary phosphine PHR2 in tetrahydrofuran/water. In comparison to the Au-thiolate MPCs, fewer of the larger phosphido groups are required to cover the surface, and the Au-P bond is not cleaved as readily in reactions with small molecules as is its Au-S counterpart. 31P NMR spectroscopy provides a direct method to study cluster formation and the interaction of the phosphido ligand with the gold surface.


Assuntos
Ouro/química , Membranas Artificiais , Nanoestruturas/química , Compostos Organometálicos/química , Fosfinas/química , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Tamanho da Partícula , Isótopos de Fósforo , Padrões de Referência , Propriedades de Superfície
20.
Inorg Chem ; 42(26): 8891-901, 2003 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-14686872

RESUMO

Deprotonation of the phosphine complexes Au(PHR(2))Cl with aqueous ammonia gave the gold(I) phosphido complexes [Au(PR(2))](n)() (PR(2) = PMes(2) (1), PCy(2) (2), P(t-Bu)(2) (3), PIs(2) (4), PPhMes (5), PHMes (6); Mes = 2,4,6-Me(3)C(6)H(2), Is = 2,4,6-(i-Pr)(3)C(6)H(2), Mes = 2,4,6-(t-Bu)(3)C(6)H(2), Cy = cyclo-C(6)H(11)). (31)P NMR spectroscopy showed that these complexes exist in solution as mixtures, presumably oligomeric rings of different sizes. X-ray crystallographic structure determinations on single oligomers of 1-4 revealed rings of varying size (n = 4, 6, 6, and 3, respectively) and conformation. Reactions of 1-3 and 5 with PPN[AuCl(2)] gave PPN[(AuCl)(2)(micro-PR(2))] (9-12, PPN = (PPh(3))(2)N(+)). Treatment of 3 with the reagents HI, I(2), ArSH, LiP(t-Bu)(2), and [PH(2)(t-Bu)(2)]BF(4) gave respectively Au(PH(t-Bu)(2))(I) (14), Au(PI(t-Bu)(2))(I) (15), Au(PH(t-Bu)(2))(SAr) (16, Ar = p-t-BuC(6)H(4)), Li[Au(P(t-Bu)(2))(2)] (17), and [Au(PH(t-Bu)(2))(2)]BF(4) (19).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...