Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 294: 118656, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890746

RESUMO

Soil chemistry of toxic metalloids and metals differs, making their simultaneous removal difficult. Soil contaminated with As, Pb, Zn and Cd was washed with oxalic acid, Na-dithionite and EDTA solution. Toxic elements were removed from the washing solution by alkalinisation with CaO to a pH 12.5: As was co-precipitated with Fe from Fe-EDTA chelate formed after the soil washing. The toxic metals precipitated after substitution of their EDTA chelates with Ca. The novel method was scaled up on the ReSoil® platform. On average, 60, 76, 29, and 53% of As, Pb, Zn, and Cd were removed, no wastewater was generated and EDTA was recycled. Addition of zero-valent iron reduced the toxic elements' leachability. Remediation was most effective for As: phytoaccessibility (CaCl2 extraction), mobility (NH4NO3), and accessibility from human gastric and gastrointestinal phases were reduced 22, 104, 6, and 51 times, respectively. Remediation increased pH but had no effect on soil functioning assessed by fluorescein diacetate hydrolysis, dehydrogenase, ß-glucosidase, urease, acid and alkaline phosphatase activities. Brassica napus produced 1.9 times more biomass on remediated soil, accumulated no As and 5.0, 2.6, and 9.0 times less Pb, Zn and Cd, respectively. We demonstrated the novel remediation technology as cost-efficient (material cost = 41.86 € t-1) and sustainable.


Assuntos
Arsênio , Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Ácido Edético , Humanos , Laboratórios , Metais Pesados/análise , Solo , Poluentes do Solo/análise
2.
Environ Sci Pollut Res Int ; 28(46): 65687-65699, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34322798

RESUMO

Two soils contaminated with potentially toxic metals (PTMs) contrasting in pH and mineralogy were remediated with CaEDTA, and changes in soil organic matter (SOM) composition were investigated. Previous studies showed no significant loss of SOM from CaEDTA-treated soils, but the results of our study reflected significant decreases (from 46 to 49%) in the free fraction of humic acids (HAs). Remediation affected the composition of the free HA fraction via disturbance of intermolecular bonds - an increase in phenolic and aromatic groups with a simultaneous decrease in carbohydrates - which was confirmed by FTIR spectroscopy in both soils. Because non-radical molecules such as carbohydrates were selectively removed, the concentration of free radicals in the free HA fraction increased in acidic soil. The bound fraction of HAs and fulvic acids (FAs) in SOM, which are important due to their stability and the permanent effects they have on the soil's physical properties, remained unchanged in both remediated soils. The effect of soil recultivation was observed only in the excitation emission matrix (EEM) fluorescence spectra of HAs. In terms of SOM, CaEDTA soil washing can be considered moderately conservative; however, the restoration of free humic fractions is likely to be a long-term process.


Assuntos
Poluentes do Solo , Solo , Ácido Edético , Substâncias Húmicas/análise , Poluentes do Solo/análise
3.
Sci Total Environ ; 792: 149060, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34325881

RESUMO

The viable chelator-based soil washing has yet to be demonstrated on a larger scale. Soil containing 1850, 3830 and 21 mg kg-1 Pb, Zn and Cd, respectively, was washed with 100 mmol EDTA kg-1 in a series of 16 batches (1 ton soil/batch) using the new ReSoil® technology. The ReSoil® recycled the process water and 85% of the EDTA, producing no wastewater and 14.4 kg ton-1 of waste. The soil washing removed 71, 28 and 53% of Pb, Zn and Cd, respectively, mainly from the carbonate fraction, saturated the soil with basic cations and increased the soil pH by up to 0.5 units. Raised beds (4 × 1 × 0.5 m) with original (contaminated) and remediated soil were constructed as lysmeters, and local produce was grown from July 2018 to November 2019. Throughout the gardening period, the concentration of Pb and Cd in the leachates from the remediated soil was lower and that of Zn was higher than in the original soil. Remediation decreased the concentration of plant-available and mobile toxic metals, as determined by CaCl2 and NH4NO3 extractions, and reduced the bioavailability of Pb, Zn, and Cd in the simulated human gastrointestinal phase by an average of 4.3, 1.7 and 2.7-fold, respectively. Revitalization with vermicompost, earthworms and rhizosphere soil, and spring fertilisation with compost and manure, had no significant effect on the mobility and accessibility of the toxic metals. The ReSoil® is a cost-effective technology (material cost = 18.27 € ton-1 soil) and showed the prospect of sustainable reuse of remediated soil.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Animais , Ácido Edético , Jardinagem , Jardins , Humanos , Solo , Poluentes do Solo/análise
4.
Sci Total Environ ; 792: 148521, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34176648

RESUMO

In previous reports large-scale EDTA-based soil washing using ReSoil® technology was demonstrated. In the current study, we established a vegetable garden with nine raised beds (4 × 1 × 0.5 m), three with original (contaminated) soil, three with remediated soil, and three with remediated soil vitalized by addition of vermicompost, earthworms, and rhizosphere inoculum. The garden was managed in 6 rotations between July 2018 and November 2019. Buckwheat was sown first as a green manure followed by spinach, lamb's lettuce, chicory, garlic, onion, leek, lettuce, carrot, kohlrabi and spinach again. Buckwheat growth on the remediated soil was reduced by half. Throughout the gardening process there were no remarkable differences in bulk density, hydraulic conductivity, available water capacity, and aggregate stability of the original and remediated soil. Biomass yield and plant performance, as measured by NDVI, also remained similar regardless of soil treatment. Remediation reduced Pb concentration in edible parts of vegetables from 76 (garlic) to 95% (kohlrabi), Zn concentration from 14 (lettuce) to 76% (first cutting of chicory), and Cd concentration from 33% (carrot) to 91% (leek and second cutting of chicory). The transfer of metals from soil to root and from root to shoot occurred in the order: Pb < Zn < Cd. The bioconcentration of toxic metals in edible plant parts was generally lower in the remediated soils. Application of ReSoil® technology and growing vegetables that exclude metals, especially Cd, has potential for safe food production on remediated soils. Vitalization had little effect on the properties of the remediated soil.


Assuntos
Metais Pesados , Poluentes do Solo , Ácido Edético , Jardinagem , Jardins , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Verduras
5.
Sci Total Environ ; 792: 148522, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34187712

RESUMO

In this study, we evaluated the impact of washing of Pb, Zn and Cd contaminated soil using EDTA-based technology (ReSoil®) on soil biological properties by measuring some of the most commonly used/sensitive biological indicators of soil perturbation. We estimated the temporal dynamics of the soil respiration, the activities of soil enzymes (dehydrogenase, ß-glucosidase, urease, acid and alkaline phosphatase), and the effect of the remediation process on arbuscular mycorrhizal (AM) fungi in original (Orig), remediated (Rem) and remediated vitalized (Rem+V) soils during a more than one-year garden experiment. ReSoil® technology initially affected the activity level of soil microbial respiration and all enzyme activities except urease and reduced AM fungal potential in the soil. However, after one year of vegetable cultivation and standard gardening practices, soil microbial respiration, acid and alkaline phosphatase in the Rem and Rem+V reached similar activities as in the Orig. Only the activities of dehydrogenase and ß-glucosidase remained lower in the remediated soil compared to the Orig. The frequency of arbuscular mycorrhiza in the root system, arbuscular density in the colonized root fragment, and the intensity of mycorrhizal colonization in the colonized root fragments in the remediated treatments increased with time; at the end of the experiment, no consistent differences in these parameters of mycorrhizal colonization were found among the treatments. Our results suggest a restored biological functioning of the remediated soil after one year of vegetable cultivation. In general, no differences were found between the Rem and Rem+V treatments, indicating that simple common garden practices are sufficient to restore soil functioning after remediation.


Assuntos
Recuperação e Remediação Ambiental , Micorrizas , Poluentes do Solo , Ácido Edético , Biomarcadores Ambientais , Jardinagem , Micorrizas/química , Solo , Microbiologia do Solo , Poluentes do Solo/análise
6.
Chemosphere ; 260: 127673, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32693264

RESUMO

Soils contaminated with Pb, Zn and Cd are hazardous. Persistent EDTA and biodegradable GLDA, EDDS and IDS have been used as chelators in the ReSoil soil washing technology, which recycles chelator and curbs toxic emissions. The washed soils supported similar growth of buckwheat (F. esculentum) and better growth of Chinese cabbage (B. rapa) compared with the original (not-remediated) soil. The growth of buckwheat on EDDS-washed soil was an exception and was 67% suppressed. The activities of enzymes of the plant antioxidant preventive system were assessed in roots and leaves of Chinese cabbage on all soils. Similar activities were measured, confirming that washed soils are not harmful to the plants. Plant uptake of potentially toxic elements was reduced from all washed soils, i.e. buckwheat grown on GLDA-washed soils accumulated up to 27 and 83 times less Pb and Cd than in the original soil. The initial Pb emissions in leachate from GLDA and IDS washed soils were up to 89 and 92% higher than those of the original soil, respectively. The latter emissions ceased to the levels measured in original, EDTA and EDDS washed soils. Soil physical properties (water holding capacity, aggregate stability) and soil functionality, assessed as soil respiration and activity of enzymes indicative for soil C, N and P cycle, were similar in all soils after 10 weeks of plant growth experiment. The overall results indicate a low impact of the remediation on soil quality. Soils washed with EDTA performed slightly better compared to GLDA-, EDDS- and IDS-washed soils.


Assuntos
Metais Pesados/química , Poluentes do Solo/química , Animais , Quelantes , Ácido Edético , Isópodes , Metais Pesados/análise , Desenvolvimento Vegetal , Reciclagem , Solo , Poluentes do Solo/análise
7.
Chemosphere ; 257: 127226, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32512332

RESUMO

In washing soils contaminated with toxic metals, the replacement of recalcitrant EDTA with biodegradable chelators has gained high expectations. Herein we investigated the feasibility of using EDTA and biodegradable GLDA, EDDS and IDS under conditions pertinent to operational remediation technology, in a pilot-scale experiment. GLDA and IDS did not precipitate from process solutions, which lessened their recyclability. In other process parameters, chelator supplement, Na-saturation of process solutions and processing time, EDTA outperformed biodegradable chelators. Treatment with EDTA was also the most effective in total Pb and Zn removal and least impacted soil properties. GLDA was slightly better in Cd removal. EDDS and IDS were inefficient. All chelators effectively removed easily-available Pb, Zn and Cd from the exchangeable soil fraction. EDTA was the most efficient chelator in reducing the bioaccessibility of Pb and GLDA in reducing the bioaccessibility of Cd from simulated human gastrointestinal tract. Treatment with GLDA had an edge in reducing plant bioaccessibility of toxic metals, but induced worrying leachability of Pb. This was 8.3-times higher than with the process with EDTA and 3.4-times higher than in original soil. In general, our results demonstrate the advantage of EDTA over tested biodegradable chelators in process and remediation efficiency and environmental safety.


Assuntos
Ácido Edético/química , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/química , Animais , Quelantes , Estudos de Viabilidade , Isópodes , Metais Pesados/análise , Reciclagem , Solo , Poluentes do Solo/análise
8.
Chemosphere ; 237: 124513, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31401429

RESUMO

The ability of contaminated farmland soils reclaimed by remediation to dissipate pesticides and thus to mitigate their unwanted environmental effects, i.e., leaching and run-off, was studied. Novel EDTA-based soil washing technology (EDTA and process waters recycling; no toxic emissions) removed 79 and 73% of Pb from acidic and calcareous soil with 740 and 2179 mg kg-1 Pb, respectively. The dissipation kinetics of four herbicides: mecoprop-P, isoproturon, bentazon and S-metolachlor was investigated under field conditions in beds with maize (Zea mays) and barley (Hordeum vulgare). The biphasic First-Order Multi-Compartment (FOMC) model was used to fit experimental data and calculate the herbicides' half-life (DT50) in soil. Remediation significantly (up to 64%) decreased dehydrogenase activity assessed as a marker of soil microbial activity and prolonged the DT50 of herbicides in acidic soils from 16% (isoproturon) to 111% (S-metachlor). Remediation had a less significant effect on herbicide dissipation in calcareous soils; i.e., mecoprop-P DT50 increased by 3%, while isoproturon and S-metachlor DT50 decreased by 29%. Overall, the dissipation from remediated soils was faster than the average DT50 of tested herbicides published in the Pesticides Properties DataBase. Results demonstrate that EDTA-based remediation of the studied soils does not pose any threat of extended herbicide persistence.


Assuntos
Ácido Edético/química , Herbicidas/análise , Metais Pesados/análise , Poluentes do Solo/análise , Ácido 2-Metil-4-clorofenoxiacético/análogos & derivados , Ácido 2-Metil-4-clorofenoxiacético/análise , Ácido 2-Metil-4-clorofenoxiacético/química , Acetamidas/análise , Acetamidas/química , Benzotiadiazinas/análise , Benzotiadiazinas/química , Recuperação e Remediação Ambiental , Herbicidas/química , Metais Pesados/química , Compostos de Fenilureia/análise , Compostos de Fenilureia/química , Solo/química , Microbiologia do Solo , Poluentes do Solo/química , Zea mays
9.
Chemosphere ; 215: 482-489, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30340156

RESUMO

The use of EDTA-based soil washing is prevented by chelant environmental persistence and the hazard of toxic post-remedial emissions. Calcareous and acidic soils with 828 and 673 mg Pb kg-1, respectively, and co-contaminated with Zn and Cd, were washed with 90 and 60 mM EDTA, respectively, to remove 67 and 80% of Pb. Washed soils were rinsed until 6.5 and 5.1 mM EDTA, respectively, was measured in the final rinsing solutions. Emissions of residual EDTA and chelated metals from remediated soils were mitigated by adsorption on zero-valent Fe (ZVI), which was added (0.5-1.5%, w/w) to the slurry of washed soil immediately before rinsing. ZVI addition prevented the initial post-remedial surge of toxic metals leachability and minimised toxic emissions from calcareous and acidic soil as soon as 6 and 7 days after remediation, respectively. The extractability/leachability of EDTA and toxic metals from remediated and ZVI amended soils diminished to close to emissions from the original soils, frequently below the limit of quantification by flame-AAS, and was not affected by the pH of the leaching solutions. Efficient curbing of toxic post-remediation emissions as demonstrated herein is of paramount importance for recognition of EDTA-based remediation as environmentally safe.


Assuntos
Quelantes/farmacologia , Recuperação e Remediação Ambiental/métodos , Ferro/farmacologia , Metais Pesados/isolamento & purificação , Cádmio/isolamento & purificação , Quelantes/química , Ácido Edético/química , Chumbo/isolamento & purificação , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise , Zinco/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...