Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 90, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303060

RESUMO

Enhancing protein stability holds paramount significance in biotechnology, therapeutics, and the food industry. Circular permutations offer a distinctive avenue for manipulating protein stability while keeping intra-protein interactions intact. Amidst the creation of circular permutants, determining the optimal placement of the new N- and C-termini stands as a pivotal, albeit largely unexplored, endeavor. In this study, we employed PONDR-FIT's predictions of disorder propensity to guide the design of circular permutants for the GroEL apical domain (residues 191-345). Our underlying hypothesis posited that a higher predicted disorder value would correspond to reduced stability in the circular permutants, owing to the increased likelihood of fluctuations in the novel N- and C-termini. To substantiate this hypothesis, we engineered six circular permutants, positioning glycines within the loops as locations for the new N- and C-termini. We demonstrated the validity of our hypothesis along the set of the designed circular permutants, as supported by measurements of melting temperatures by circular dichroism and differential scanning microcalorimetry. Consequently, we propose a novel computational methodology that rationalizes the design of circular permutants with projected stability. Video Abstract.

2.
Biomolecules ; 14(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38254654

RESUMO

Ice-binding proteins are crucial for the adaptation of various organisms to low temperatures. Some of these, called antifreeze proteins, are usually thought to inhibit growth and/or recrystallization of ice crystals. However, prior to these events, ice must somehow appear in the organism, either coming from outside or forming inside it through the nucleation process. Unlike most other works, our paper is focused on ice nucleation and not on the behavior of the already-nucleated ice, its growth, etc. The nucleation kinetics is studied both theoretically and experimentally. In the theoretical section, special attention is paid to surfaces that bind ice stronger than water and thus can be "ice nucleators", potent or relatively weak; but without them, ice cannot be nucleated in any way in calm water at temperatures above -30 °C. For experimental studies, we used: (i) the ice-binding protein mIBP83, which is a previously constructed mutant of a spruce budworm Choristoneura fumiferana antifreeze protein, and (ii) a hyperactive ice-binding antifreeze protein, RmAFP1, from a longhorn beetle Rhagium mordax. We have shown that RmAFP1 (but not mIBP83) definitely decreased the ice nucleation temperature of water in test tubes (where ice originates at much higher temperatures than in bulk water and thus the process is affected by some ice-nucleating surfaces) and, most importantly, that both of the studied ice-binding proteins significantly decreased the ice nucleation temperature that had been significantly raised in the presence of potent ice nucleators (CuO powder and ice-nucleating bacteria Pseudomonas syringae). Additional experiments on human cells have shown that mIBP83 is concentrated in some cell regions of the cooled cells. Thus, the ice-binding protein interacts not only with ice, but also with other sites that act or potentially may act as ice nucleators. Such ice-preventing interaction may be the crucial biological task of ice-binding proteins.


Assuntos
Proteínas de Transporte , Gelo , Humanos , Física , Temperatura Baixa , Proteínas Anticongelantes/genética
3.
Protein J ; 41(2): 304-314, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35366124

RESUMO

Ice-binding proteins are expressed in the cells of some cold adapted organisms, helping them to survive at extremely low temperatures. One of the problems in studying such proteins is the difficulty of their isolation and purification. For example, eight cysteine residues in the cfAF (antifreeze protein from the eastern spruce budworm Choristoneura fumiferana) form intermolecular bridges during the overexpression of this protein. This impedes the process of the protein purification dramatically. To overcome this issue, in this work, we designed a mutant form of the ice-binding protein cfAFP, which is much easier to isolate that the wild-type protein. The mutant form named mIBP83 did not lose the ability to bind to ice surface. Besides, observation of the processes of freezing and melting of ice in the presence of mIBP83 showed that this protein affects the process of ice melting, increasing its melting temperature, and does not decrease the water freezing temperature.


Assuntos
Gelo , Mariposas , Animais , Proteínas Anticongelantes/química , Proteínas Anticongelantes/genética , Proteínas Anticongelantes/metabolismo , Proteínas de Transporte , Congelamento , Mariposas/química , Mariposas/genética , Mariposas/metabolismo
5.
Prog Mol Biol Transl Sci ; 174: 157-186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32828465

RESUMO

Directed stabilization of globular proteins via substitution of a minimal number of amino acid residues is one of the most complicated experimental tasks. In this work, we have successfully used algorithms for the evaluation of intrinsic disorder predisposition (such as PONDR® FIT and IsUnstruct) as tools for searching for the weakened regions in structured globular proteins. We have shown that the weakened regions found by these programs as regions with highest levels of predicted intrinsic disorder predisposition are a suitable target for introduction of stabilizing mutations.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Sequência de Aminoácidos , Animais , Dissulfetos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Conformação Proteica , Estabilidade Proteica
6.
Biomolecules ; 10(1)2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31906016

RESUMO

Directed stabilization of globular proteins via substitution of a minimal number of amino acid residues is one of the most complicated experimental tasks. This work summarizes our research on the effect of amino acid substitutions on the protein stability utilizing the outputs of the analysis of intrinsic disorder predisposition of target proteins. This allowed us to formulate the basis of one of the possible approaches to the stabilization of globular proteins. The idea is quite simple. To stabilize a protein as a whole, one needs to find its "weakest spot" and stabilize it, but the question is how this weak spot can be found in a query protein. Our approach is based on the utilization of the computational tools for the per-residue evaluation of intrinsic disorder predisposition to search for the "weakest spot" of a query protein (i.e., the region(s) with the highest local predisposition for intrinsic disorder). When such "weakest spot" is found, it can be stabilized through a limited number of point mutations by introducing order-promoting residues at hot spots, thereby increasing structural stability of a protein as a whole. Using this approach, we were able to obtain stable mutant forms of several globular proteins, such as Gαo, GFP, ribosome protein L1, and circular permutant of apical domain of GroEL.


Assuntos
Proteínas Intrinsicamente Desordenadas/síntese química , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Mutação Puntual , Conformação Proteica , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...