Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 35(15): 1131-9, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24752947

RESUMO

Experimental X-ray absorption spectra are extensively used to determine electronic structure of small molecules but remain difficult to exploit for proteins due to the large number of peaks within their spectra. For such complex systems, theoretical tools like quantum mechanics/molecular mechanics methodology can greatly ease the assignment of the spectra. This study presents a systematic methodology to evaluate core-ionization energies (E(ion)) in proteins with the help of the asymptotic projection approach (Glushkov and Tsaune, Z. Vichislit. Matem. Mat. Fiz. 1985, 25, 298; Glushkov, Chem. Phys. Lett. 1997, 273, 122; Glushkov, Chem. Phys. Lett. 1998, 287, 189; Glushkov, J. Math. Chem. 2002, 31, 91; Glushkov, Opt. Spectrosc. 2002, 93, 15). An in-depth inspection of E(ion) of systems of increasing complexity is considered, going from amino acids to polyglycine and to glycine in human serum albumin (HSA). Computational analysis can help to better understand experimental data and to discriminate environmental effects by tracing them back to individual and collective electrostatic contributions. In the present work, it was found that E(ion) of alpha carbon of glycine residues in HSA ranges from 285 to 295 eV depending on their surroundings.


Assuntos
Proteínas/química , Espectroscopia por Absorção de Raios X/métodos , Aminoácidos/química , Simulação por Computador , Íons , Modelos Químicos , Modelos Moleculares , Compostos Orgânicos , Conformação Proteica
2.
J Comput Chem ; 35(4): 313-23, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24403018

RESUMO

We further develop an idea to generate a compact multireference space without first solving the configuration interaction problem previously proposed for the ground state (GS) (Glushkov, Chem. Phys. Lett. 1995, 244, 1). In the present contribution, our attention is focused on low-lying excited states (ESs) with the same symmetry as the GS which can be adequately described in terms of an high-spin open-shell formalism. Two references Møller-Plesset (MP) like perturbation theory for ESs is developed. It is based on: (1) a main reference configuration constructed from the parent molecular orbitals adjusted to a given ES and (2) secondary double excitation configuration built on the GS like orbitals determined by the Hartree-Fock equations subject to some orthogonality constraints. It is shown how to modify the MP zeroth-order Hamiltonian so that the reference configurations and corresponding excitations are eigenfunctions of it and are compatible with orthogonality conditions for the GS and ES. Intruder states appearance is also discussed. The proposed scheme is applied to the GS, ES, and excitation energies of small molecules to illustrate and calibrate our calculations.

3.
J Chem Phys ; 133(24): 244104, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21197973

RESUMO

The constrained variational Hartree-Fock method for excited states of the same symmetry as the ground state [Chem. Phys. Lett. 287, 189 (1998)] is combined with the effective local potential (ELP) method [J. Chem. Phys. 125, 081104 (2006)] to generate Kohn-Sham-type exact-exchange potentials for singly excited states of many-electron systems. Illustrative examples include the three lowest (2)S states of the Li and Na atoms and the three lowest (3)S states of He and Be. For the systems studied, excited-state ELPs differ from the corresponding ground-state potentials in two respects: They are less negative and have small additional "bumps" in the outer electron region. The technique is general and can be used to approximate excited-state exchange-correlation potentials for other orbital-dependent functionals.

4.
J Chem Phys ; 125(23): 234111, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17190551

RESUMO

In this paper the authors further develop and apply the direct-mapping density functional theory to calculations of the atomization energies and ionization potentials. Single-particle orbitals are determined by solving the Kohn-Sham [Phys. Rev. A. 140, 1133 (1965)] equations with a local effective potential expressed in terms of the external potential. A two-parametric form of the effective potential for molecules is proposed and equations for optimization of the parameters are derived using the exchange-only approximation. Orbital-dependent correlation functional is derived from the second-order perturbation theory in its Moller-Plesset-type zeroth-order approximation based on the Kohn-Sham orbitals and orbital energies. The total atomization energies and ionization potentials computed with the second-order perturbation theory were found to be in agreement with experimental values and benchmark results obtained with ab initio wave mechanics methods.

5.
J Chem Phys ; 124(3): 034105, 2006 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-16438565

RESUMO

In this paper we apply the direct-mapping density-functional theory (DFT) to open-shell systems, in order to get many-electron wave functions having the same transformation properties as the eigenstates of the exact Hamiltonians. Such a case is that of spin, where in order to get the magnetic properties, the many-particle states must be eigenstates not only of S(z) but also of S2. In this theory the Kohn and Sham [Phys. Rev. A 140, 1133 (1965)] potential is expressed directly as a mapping of the external potential. The total energies of the molecules calculated were satisfactory as their relative deviations (deltaEE) from the exact Hartree-Fock ones were of the order of 10(-4). This accuracy is much higher than that of the standard DFT in its local exchange potential approximation. This method does not need an approximate density as input, as the effective potential is derived directly from the external potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...