Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 108(4): 1627-32, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21205898

RESUMO

Intraerythrocytic malaria parasites can obtain nearly their entire amino acid requirement by degrading host cell hemoglobin. The sole exception is isoleucine, which is not present in adult human hemoglobin and must be obtained exogenously. We evaluated two compounds for their potential to interfere with isoleucine utilization. Mupirocin, a clinically used antibacterial, kills Plasmodium falciparum parasites at nanomolar concentrations. Thiaisoleucine, an isoleucine analog, also has antimalarial activity. To identify targets of the two compounds, we selected parasites resistant to either mupirocin or thiaisoleucine. Mutants were analyzed by genome-wide high-density tiling microarrays, DNA sequencing, and copy number variation analysis. The genomes of three independent mupirocin-resistant parasite clones had all acquired either amplifications encompassing or SNPs within the chromosomally encoded organellar (apicoplast) isoleucyl-tRNA synthetase. Thiaisoleucine-resistant parasites had a mutation in the cytoplasmic isoleucyl-tRNA synthetase. The role of this mutation in thiaisoleucine resistance was confirmed by allelic replacement. This approach is generally useful for elucidation of new targets in P. falciparum. Our study shows that isoleucine utilization is an essential pathway that can be targeted for antimalarial drug development.


Assuntos
Isoleucina-tRNA Ligase/metabolismo , Isoleucina/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Adulto , Animais , Antibacterianos/farmacologia , Relação Dose-Resposta a Droga , Resistência a Medicamentos/genética , Eritrócitos/parasitologia , Genoma de Protozoário/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hemoglobinas/metabolismo , Humanos , Isoleucina/análogos & derivados , Isoleucina/farmacologia , Isoleucina-tRNA Ligase/genética , Microscopia de Fluorescência , Mupirocina/farmacologia , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética
2.
Antimicrob Agents Chemother ; 52(7): 2346-54, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18443109

RESUMO

Cysteine protease inhibitors kill malaria parasites and are being pursued for development as antimalarial agents. Because they have multiple targets within bloodstream-stage parasites, workers have assumed that resistance to these inhibitors would not be acquired easily. In the present study, we used in vitro selection to generate a parasite resistant to growth inhibition by leupeptin, a broad-profile cysteine and serine protease inhibitor. Resistance was not associated with upregulation of cysteine protease activity, reduced leupeptin sensitivity of this activity, or expression level changes for putative cysteine or serine proteases in the parasite genome. Instead, it was associated with marked changes in the plasmodial surface anion channel (PSAC), an ion channel on infected erythrocytes that functions in nutrient and bulky organic solute uptake. Osmotic fragility measurements, electrophysiological recordings, and leupeptin uptake studies revealed selective reductions in organic solute permeability via PSAC, altered single-channel gating, and reduced inhibitor affinity. These changes yielded significantly reduced leupeptin uptake and could fully account for the acquired resistance. PSAC represents a novel route for the uptake of bulky hydrophilic compounds acting against intraerythrocytic parasite targets. Drug development based on such compounds should proceed cautiously in light of possible resistance development though the selection of PSAC mutants.


Assuntos
Resistência a Medicamentos/fisiologia , Eritrócitos/parasitologia , Canais Iônicos/metabolismo , Leupeptinas/farmacocinética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Antimaláricos/farmacocinética , Transporte Biológico Ativo , Permeabilidade da Membrana Celular , Inibidores de Cisteína Proteinase/farmacocinética , Genes de Protozoários , Humanos , Técnicas In Vitro , Canais Iônicos/genética , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
3.
Mol Microbiol ; 63(2): 314-34, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17074076

RESUMO

Falcilysin (FLN) is a zinc metalloprotease thought to degrade globin peptides in the acidic vacuole of the human malaria parasite Plasmodium falciparum. The enzyme has been found to have acidic or neutral pH optima on different peptides and to have additional distribution outside the food vacuole. These data suggested that FLN has an additional function in the parasite. To further probe the functions of FLN, we created a transgenic parasite clone expressing a chromosomally encoded FLN-GFP fusion. Unexpectedly, FLN was found in the apicoplast, an essential chloroplast-like organelle. Nuclear encoded apicoplast proteins are targeted to the organelle by a bipartite N-terminal sequence comprised of a signal sequence followed by a positively charged transit peptide domain. Free transit peptides are thought to be toxic to the plastid and need to be rapidly degraded after proteolytic release from proproteins. We hypothesized that FLN may participate in transit peptide degradation in the apicoplast based on its preference for basic residues at neutral pH and on phylogenetic comparison with other M16 family metalloproteases. In vitro cleavage by FLN of the transit peptide from the apicoplast-resident acyl carrier protein supports this idea. The importance of FLN for parasite development is suggested by our inability to truncate the chromosomal FLN open reading frame. Our work indicates that FLN is an attractive target for antimalarial development.


Assuntos
Metaloendopeptidases/metabolismo , Peptídeos/metabolismo , Plasmodium falciparum/enzimologia , Plastídeos/metabolismo , Proteínas de Protozoários/metabolismo , Proteína de Transporte de Acila/metabolismo , Animais , Fusão Gênica Artificial , Biologia Computacional , Genes de Protozoários , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Metaloendopeptidases/genética , Microscopia Confocal , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Filogenia , Plasmodium falciparum/genética , Plasmodium falciparum/ultraestrutura , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Deleção de Sequência , Homologia de Sequência de Aminoácidos
4.
Proc Natl Acad Sci U S A ; 103(23): 8840-5, 2006 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-16731623

RESUMO

Degradation of host hemoglobin by the human malaria parasite Plasmodium falciparum is a massive metabolic process. What role this degradation plays and whether it is essential for parasite survival have not been established, nor have the roles of the various degradative enzymes been clearly defined. We report that P. falciparum can grow in medium containing a single amino acid (isoleucine, the only amino acid missing from human hemoglobin). In this medium, growth of hemoglobin-degrading enzyme gene knockout lines (missing falcipain-2 and plasmepsins alone or in combination) is impaired. Blockade of plasmepsins with the potent inhibitor pepstatin A has a minimal effect on WT parasite growth but kills falcipain-2 knockout parasites at low concentrations and is even more potent on falcipain-2, plasmepsin I and IV triple knockout parasites. We conclude that: (i) hemoglobin degradation is necessary for parasite survival; (ii) hemoglobin degradation is sufficient to supply most of the parasite's amino acid requirements; (iii) external amino acid acquisition and hemoglobin digestion are partially redundant nutrient pathways; (iv) hemoglobin degradation uses dual protease families with overlapping function; and (v) hemoglobin-degrading plasmepsins are not promising drug targets.


Assuntos
Aminoácidos/metabolismo , Peptídeo Hidrolases/metabolismo , Plasmodium falciparum/metabolismo , Animais , Células Cultivadas , Cromossomos/genética , Meios de Cultura , Hemoglobinas/metabolismo , Humanos , Concentração Inibidora 50 , Pepstatinas , Plasmodium falciparum/enzimologia , Inibidores de Proteases , Fatores de Tempo
5.
J Biol Chem ; 280(2): 1432-7, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15513918

RESUMO

Plasmepsins (PMs) are thought to have an important function in hemoglobin degradation in the malarial parasite Plasmodium falciparum and have generated interest as antimalarial drug targets. Four paralogous plasmepsins reside in the food vacuole of P. falciparum. Targeted gene disruption by double crossover homologous recombination has been employed to study food vacuole plasmepsin function in cultured parasites. Parasite clones with deletions in each of the individual PM I, PM II, and HAP genes as well as clones with a double PM IV/PM I disruption have been generated. All of these clones lack the corresponding PMs, are viable, and appear morphologically normal. PM II and PM IV/I disruptions have longer doubling times than the 3D7 parental line in rich RPMI medium. This appears to be because of a decreased level of productive progeny rather than an increased cell cycle time. In amino acid-limited medium, all four knockouts exhibit slower growth than the parental strain. Compared with 3D7, knock-out clone sensitivity to aspartic and cysteine protease inhibitors is changed minimally. These results suggest substantial functional redundancy and have important implications for the design of antimalarial drugs. The slow growth phenotype may explain why P. falciparum has maintained four plasmepsin genes with overlapping functions.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Alimentos , Leucina/análogos & derivados , Vacúolos/metabolismo , Aminoácidos/deficiência , Animais , Ácido Aspártico Endopeptidases/deficiência , Ácido Aspártico Endopeptidases/genética , Ciclo Celular , Meios de Cultura/química , Meios de Cultura/farmacologia , Genes de Protozoários/genética , Leucina/farmacologia , Parasitos/citologia , Parasitos/efeitos dos fármacos , Parasitos/genética , Parasitos/crescimento & desenvolvimento , Pepstatinas/farmacologia , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo
6.
J Biol Chem ; 279(41): 43000-7, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-15304495

RESUMO

Intraerythrocytic growth of the human malaria parasite Plasmodium falciparum requires the catabolism of large amounts of host cell hemoglobin. Endoproteolytic digestion of hemoglobin to short oligopeptides occurs in an acidic organelle called the food vacuole. How amino acids are generated from these peptides is not well understood. To gain insight into this process, we have studied a plasmodial ortholog of the lysosomal exopeptidase cathepsin C. The plasmodial enzyme dipeptidyl aminopeptidase 1 (DPAP1) was enriched from parasite extract by two different approaches and was shown to possess hydrolytic activity against fluorogenic dipeptide substrates. To localize DPAP1 we created a transgenic parasite line expressing a chromosomally encoded DPAP1-green fluorescent protein fusion. Green fluorescent protein fluorescence was observed in the food vacuole of live transgenic parasites, and anti-DPAP1 antibody labeled the food vacuole in parasite cryosections. Together these data implicate DPAP1 in the generation of dipeptides from hemoglobin-derived oligopeptides. To assess the significance of DPAP1, we attempted to ablate DPAP1 activity from blood stage parasites by truncating the chromosomal DPAP1-coding sequence. The inability to disrupt the coding sequence indicates that DPAP1 is important for asexual proliferation. The proenzyme form of DPAP1 was found to accumulate in the parasitophorous vacuole of mature parasites. This observation suggests a trafficking route for DPAP1 through the parasitophorous vacuole to the food vacuole.


Assuntos
Catepsina C/fisiologia , Hemoglobinas/metabolismo , Plasmodium falciparum/metabolismo , Vacúolos/metabolismo , Sequência de Aminoácidos , Animais , Southern Blotting , Catepsina C/química , Catepsina C/metabolismo , Divisão Celular , Cromossomos/metabolismo , Clonagem Molecular , Eritrócitos/metabolismo , Humanos , Hidrólise , Immunoblotting , Imunoprecipitação , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Peptídeos/química , Proteínas/química , Proteínas Recombinantes de Fusão/química , Homologia de Sequência de Aminoácidos , Frações Subcelulares , Fatores de Tempo
7.
J Cell Biol ; 164(1): 47-56, 2004 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-14709539

RESUMO

A family of aspartic proteases, the plasmepsins (PMs), plays a key role in the degradation of hemoglobin in the Plasmodium falciparum food vacuole. To study the trafficking of proPM II, we have modified the chromosomal PM II gene in P. falciparum to encode a proPM II-GFP chimera. By taking advantage of green fluorescent protein fluorescence in live parasites, the ultrastructural resolution of immunoelectron microscopy, and inhibitors of trafficking and PM maturation, we have investigated the biosynthetic path leading to mature PM II in the food vacuole. Our data support a model whereby proPM II is transported through the secretory system to cytostomal vacuoles and then is carried along with its substrate hemoglobin to the food vacuole where it is proteolytically processed to mature PM II.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Plasmodium falciparum/metabolismo , Vacúolos/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Inibidores Enzimáticos/farmacologia , Precursores Enzimáticos/antagonistas & inibidores , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Proteínas de Fluorescência Verde , Hemoglobinas/metabolismo , Imuno-Histoquímica , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Eletrônica , Modelos Biológicos , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Plasmodium falciparum/genética , Plasmodium falciparum/ultraestrutura , Transporte Proteico/genética , Proteínas de Protozoários , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vacúolos/genética , Vacúolos/ultraestrutura
8.
Bioorg Med Chem ; 10(11): 3649-61, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12213481

RESUMO

Readily accessible, novel, and potent anti-malarial compounds have been developed. Optimization of the initial lead structure resulted in derivatives with IC50 values from 7 to 35 nM against chloroquine-sensitive and 70-350 nM against chloroquine-resistant strains of Plasmodium falciparum.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Alquilação , Animais , Células Cultivadas , Cloroquina/farmacologia , Resistência a Medicamentos , Indicadores e Reagentes , Espectroscopia de Ressonância Magnética , Relação Estrutura-Atividade
9.
Chem Biol ; 9(8): 881-9, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12204687

RESUMO

The erythrocytic growth stage of Plasmodium falciparum involves hemoglobin proteolysis as the primary nutrient source with the concomitant release of free heme. The liberated heme is processed by the parasite into hemozoin, a polymeric porphyrin dimer. Histidine-rich protein binds heme and mediates the formation of hemozoin, which is inhibited by the antimalarial drug chloroquine. Interference with heme binding was determined using a microtiterplate assay. Combinatorial libraries were screened and tested against parasite growth, revealing a good correlation between heme binding interference and the inhibition of parasite growth. Several of these compounds retain their potency against a chloroquine-resistant strain of Plasmodium falciparum. The most potent compounds have IC(50) values less than or equal to 50 nM against chloroquine-resistant and chloroquine-sensitive parasites.


Assuntos
Antimaláricos/química , Heme/metabolismo , Proteínas/metabolismo , Animais , Antimaláricos/farmacologia , Técnicas de Química Combinatória , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Concentração Inibidora 50 , Plasmodium falciparum/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...