Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 9: 2843, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564239

RESUMO

The killer-cell immunoglobulin-like receptor (KIR) genes regulate natural killer cell activity, influencing predisposition to immune mediated disease, and affecting hematopoietic stem cell transplantation (HSCT) outcome. Owing to the complexity of the KIR locus, with extensive gene copy number variation (CNV) and allelic diversity, high-resolution characterization of KIR has so far been applied only to relatively small cohorts. Here, we present a comprehensive high-throughput KIR genotyping approach based on next generation sequencing. Through PCR amplification of specific exons, our approach delivers both copy numbers of the individual genes and allelic information for every KIR gene. Ten-fold replicate analysis of a set of 190 samples revealed a precision of 99.9%. Genotyping of an independent set of 360 samples resulted in an accuracy of more than 99% taking into account consistent copy number prediction. We applied the workflow to genotype 1.8 million stem cell donor registry samples. We report on the observed KIR allele diversity and relative abundance of alleles based on a subset of more than 300,000 samples. Furthermore, we identified more than 2,000 previously unreported KIR variants repeatedly in independent samples, underscoring the large diversity of the KIR region that awaits discovery. This cost-efficient high-resolution KIR genotyping approach is now applied to samples of volunteers registering as potential donors for HSCT. This will facilitate the utilization of KIR as additional selection criterion to improve unrelated donor stem cell transplantation outcome. In addition, the approach may serve studies requiring high-resolution KIR genotyping, like population genetics and disease association studies.


Assuntos
Receptores KIR/genética , Algoritmos , Alelos , Variações do Número de Cópias de DNA/genética , Dosagem de Genes/genética , Genótipo , Transplante de Células-Tronco Hematopoéticas/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Células Matadoras Naturais/imunologia , Fluxo de Trabalho
2.
Magn Reson Imaging ; 37: 147-158, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27871865

RESUMO

The purpose of this study is to improve direct phosphorus (31P) MR imaging. Therefore, 3D density-adapted radially-sampled balanced steady-state free precession (bSSFP) sequences were developed and an iterative approach exploiting additional anatomical information from hydrogen (1H) data was evaluated. Three healthy volunteers were examined at B0=7T in order to obtain the spatial distribution of the phosphocreatine (PCr) intensities in the human calf muscle with a nominal isotropic resolution of 10mm in an acquisition time of 10min. Three different bSSFP gradient schemes were investigated. The highest signal-to-noise ratio (SNR) was obtained for a scheme with two point-reflected density-adapted gradients. Furthermore, the conventional reconstruction based on a gridding algorithm was compared to an iterative method using an 1H MRI constraint in terms of a segmented binary mask, which comprises prior knowledge. The parameters of the iterative approach were optimized and evaluated by simulations featuring 31P MRI parameters. Thereby, partial volume effects as well as Gibbs ringing artifacts could be reduced. In conclusion, the iterative reconstruction of 31P bSSFP data using an 1H MRI constraint is appropriate for investigating regions where sharp tissue boundaries occur and leads to images that represent the real PCr distributions better than conventionally reconstructed images.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/metabolismo , Fosfocreatina/metabolismo , Radioisótopos de Fósforo , Adulto , Feminino , Humanos , Perna (Membro)/diagnóstico por imagem , Prótons , Valores de Referência , Razão Sinal-Ruído
3.
Magn Reson Med ; 75(4): 1605-16, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25989746

RESUMO

PURPOSE: To reduce noise and artifacts in (23)Na MRI with a Compressed Sensing reconstruction and a learned dictionary as sparsifying transform. METHODS: A three-dimensional dictionary-learning compressed sensing reconstruction algorithm (3D-DLCS) for the reconstruction of undersampled 3D radial (23)Na data is presented. The dictionary used as the sparsifying transform is learned with a K-singular-value-decomposition (K-SVD) algorithm. The reconstruction parameters are optimized on simulated data, and the quality of the reconstructions is assessed with peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The performance of the algorithm is evaluated in phantom and in vivo (23)Na MRI data of seven volunteers and compared with nonuniform fast Fourier transform (NUFFT) and other Compressed Sensing reconstructions. RESULTS: The reconstructions of simulated data have maximal PSNR and SSIM for an undersampling factor (USF) of 10 with numbers of averages equal to the USF. For 10-fold undersampling, the PSNR is increased by 5.1 dB compared with the NUFFT reconstruction, and the SSIM by 24%. These results are confirmed by phantom and in vivo (23)Na measurements in the volunteers that show markedly reduced noise and undersampling artifacts in the case of 3D-DLCS reconstructions. CONCLUSION: The 3D-DLCS algorithm enables precise reconstruction of undersampled (23)Na MRI data with markedly reduced noise and artifact levels compared with NUFFT reconstruction. Small structures are well preserved.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Isótopos de Sódio/química , Adulto , Algoritmos , Feminino , Humanos , Masculino , Imagens de Fantasmas , Isótopos de Sódio/administração & dosagem , Isótopos de Sódio/metabolismo , Adulto Jovem
4.
Neuroimage ; 105: 452-61, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25462793

RESUMO

Sodium ((23)Na) MRI is a noninvasive tool to assess cell viability, which is linked to the total tissue sodium concentration (TSC). However, due to low in vivo concentrations, (23)Na MRI suffers from low signal-to-noise ratio (SNR) and limited spatial resolution. As a result, image quality is compromised by Gibbs ringing artifacts and partial volume effects. An iterative reconstruction algorithm that incorporates prior information from (1)H MRI is developed to reduce partial volume effects and to increase the SNR in non-proton MRI. Anatomically weighted second-order total variation (AnaWeTV) is proposed as a constraint for compressed sensing reconstruction of 3D projection reconstruction (3DPR) data. The method is evaluated in simulations and a MR measurement of a multiple sclerosis (MS) patient by comparing it to gridding and other reconstruction techniques. AnaWeTV increases resolution of known structures and reduces partial volume effects. In simulated MR brain data (nominal resolution Δx(3) = 3 × 3 × 3 mm(3)), the intensity error of four small MS lesions was reduced from (6.9 ± 3.8)% (gridding) to (2.8 ± 1.4)% (AnaWeTV with T2-weighted reference images). Compared to gridding, a substantial SNR increase of 130% was found in the white matter of the MS patient. The algorithm is robust against misalignment of the prior information on the order of the (23)Na image resolution. Features without prior information are still reconstructed with high contrast. AnaWeTV allows a more precise quantification of TSC in structures with prior knowledge. Thus, the AnaWeTV algorithm is in particular beneficial for the assessment of tissue structures that are visible in both (23)Na and (1)H MRI.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Espectroscopia de Ressonância Magnética/métodos , Adulto , Humanos , Masculino , Esclerose Múltipla/patologia , Espectroscopia de Prótons por Ressonância Magnética/métodos , Sódio/metabolismo
5.
Magn Reson Med ; 71(5): 1720-32, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23754674

RESUMO

PURPOSE: To increase the signal-to-noise ratio (SNR) and to reduce artifacts in non-proton magnetic resonance imaging (MRI) by incorporation of a priori information from (1) H MR data in an iterative reconstruction. METHODS: An iterative reconstruction algorithm for 3D projection reconstruction (3DPR) is presented that combines prior anatomical knowledge and image sparsity under a total variation (TV) constraint. A binary mask (BM) is used as an anatomical constraint to penalize non-zero signal intensities outside the object. The BM&TV method is evaluated in simulations and in MR measurements in volunteers. RESULTS: In simulated BM&TV brain data, the artifact level was reduced by 20% while structures were well preserved compared to gridding. SNR maps showed a spatially dependent SNR gain over gridding reconstruction, which was up to 100% for simulated data. Undersampled 3DPR (23) Na MRI of the human brain revealed an SNR increase of 29 ± 7%. Small anatomical structures were reproduced with a mean contrast loss of 14%, whereas in TV-regularized iterative reconstructions a loss of 66% was found. CONCLUSION: The BM&TV algorithm allows reconstructing images with increased SNR and reduced artifact level compared to gridding and performs superior to an iterative reconstruction using an unspecific TV constraint only.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Compostos de Sódio/metabolismo , Adulto , Feminino , Humanos , Masculino , Compostos Radiofarmacêuticos/farmacocinética , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Isótopos de Sódio/farmacocinética , Distribuição Tecidual , Adulto Jovem
6.
Phys Rev Lett ; 106(20): 203601, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21668227

RESUMO

We study collective scattering with Bose-Einstein condensates interacting with a high-finesse ring cavity. The condensate scatters the light of a transverse pump beam superradiantly into modes which, in contrast to previous experiments, are not determined by the geometrical shape of the condensate, but specified by a resonant cavity mode. Moreover, since the recoil-shifted frequency of the scattered light depends on the initial momentum of the scattered fraction of the condensate, we show that it is possible to employ the good resolution of the cavity as a filter selecting particular quantized momentum states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...