Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0289239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625918

RESUMO

Dipeptidyl peptidase 4 (DP4)/CD26 regulates the biological function of various peptide hormones by releasing dipeptides from their N-terminus. The enzyme is a prominent target for the treatment of type-2 diabetes and various DP4 inhibitors have been developed in recent years, but their efficacy and side effects are still an issue. Many available crystal structures of the enzyme give a static picture about enzyme-ligand interactions, but the influence of amino acids in the active centre on binding and single catalysis steps can only be judged by mutagenesis studies. In order to elucidate their contribution to inhibitor binding and substrate catalysis, especially in discriminating the P1 amino acid of substrates, the amino acids R125, N710, E205 and E206 were investigated by mutagenesis studies. Our studies demonstrated, that N710 is essential for the catalysis of dipeptide substrates. We found that R125 is not important for dipeptide binding but interacts in the P1`position of the peptide backbone. In contrast to dipeptide substrates both amino acids play an essential role in the binding and arrangement of long natural substrates, particularly if lacking proline in the P1 position. Thus, it can be assumed that the amino acids R125 and N710 are important in the DP4 catalysed substrate hydrolysis by interacting with the peptide backbone of substrates up- and downstream of the cleavage site. Furthermore, we confirmed the important role of the amino acids E205 and E206. However, NP Y, displaying proline in P1 position, is still processed without the participation of E205 or E206.


Assuntos
Aminoácidos , Dipeptidil Peptidase 4 , Domínio Catalítico , Dipeptídeos/química , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Peptídeos , Prolina/metabolismo , Serina Endopeptidases/metabolismo , Especificidade por Substrato , Humanos
2.
Brain ; 145(10): 3558-3570, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36270003

RESUMO

Alzheimer's disease is neuropathologically characterized by the deposition of the amyloid ß-peptide (Aß) as amyloid plaques. Aß plaque pathology starts in the neocortex before it propagates into further brain regions. Moreover, Aß aggregates undergo maturation indicated by the occurrence of post-translational modifications. Here, we show that propagation of Aß plaques is led by presumably non-modified Aß followed by Aß aggregate maturation. This sequence was seen neuropathologically in human brains and in amyloid precursor protein transgenic mice receiving intracerebral injections of human brain homogenates from cases varying in Aß phase, Aß load and Aß maturation stage. The speed of propagation after seeding in mice was best related to the Aß phase of the donor, the progression speed of maturation to the stage of Aß aggregate maturation. Thus, different forms of Aß can trigger propagation/maturation of Aß aggregates, which may explain the lack of success when therapeutically targeting only specific forms of Aß.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Humanos , Camundongos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Placa Amiloide/metabolismo , Camundongos Transgênicos , Encéfalo/patologia , Modelos Animais de Doenças
3.
Biomolecules ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35327591

RESUMO

Passive immunotherapy is a very promising approach for the treatment of Alzheimer's disease (AD). Among the different antibodies under development, those targeting post-translationally modified Aß peptides might combine efficient reduction in beta-amyloid accompanied by lower sequestration in peripheral compartments and thus anticipated and reduced treatment-related side effects. In that regard, we recently demonstrated that the antibody-mediated targeting of isoD7-modified Aß peptides leads to the attenuation of AD-like amyloid pathology in 5xFAD mice. In order to assess novel strategies to enhance the efficacy of passive vaccination approaches, we investigated the role of CD33 for Aß phagocytosis in transgenic mice treated with an isoD7-Aß antibody. We crossbred 5xFAD transgenic mice with CD33 knock out (CD33KO) mice and compared the amyloid pathology in the different genotypes of the crossbreds. The knockout of CD33 in 5xFAD mice leads to a significant reduction in Aß plaques and concomitant rescue of behavioral deficits. Passive immunotherapy of 5xFAD/CD33KO showed a significant increase in plaque-surrounding microglia compared to 5xFAD treated with the antibody. Additionally, we observed a stronger lowering of Aß plaque load after passive immunotherapy in 5xFAD/CD33KO mice. The data suggest an additive effect of passive immunotherapy and CD33KO in terms of lowering Aß pathology. Hence, a combination of CD33 antagonists and monoclonal antibodies might represent a strategy to enhance efficacy of passive immunotherapy in AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/terapia , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Imunização Passiva , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Placa Amiloide/patologia
4.
Alzheimers Res Ther ; 12(1): 149, 2020 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-33189132

RESUMO

BACKGROUND: Amyloid ß (Aß)-directed immunotherapy has shown promising results in preclinical and early clinical Alzheimer's disease (AD) trials, but successful translation to late clinics has failed so far. Compelling evidence suggests that post-translationally modified Aß peptides might play a decisive role in onset and progression of AD and first clinical trials targeting such Aß variants have been initiated. Modified Aß represents a small fraction of deposited material in plaques compared to pan-Aß epitopes, opening up pathways for tailored approaches of immunotherapy. Here, we generated the first monoclonal antibodies that recognize L-isoaspartate-modified Aß (isoD7-Aß) and tested a lead antibody molecule in 5xFAD mice. METHODS: This work comprises a combination of chemical and biochemical techniques as well as behavioral analyses. Aß peptides, containing L-isoaspartate at position 7, were chemically synthesized and used for immunization of mice and antibody screening methods. Biochemical methods included anti-isoD7-Aß monoclonal antibody characterization by surface plasmon resonance, immunohistochemical staining of human and transgenic mouse brain, and the development and application of isoD7-Aß ELISA as well as different non-modified Aß ELISA. For antibody treatment studies, 12 mg/kg anti-isoD7-Aß antibody K11_IgG2a was applied intraperitoneally to 5xFAD mice for 38 weeks. Treatment controls implemented were IgG2a isotype as negative and 3D6_IgG2a, the parent molecule of bapineuzumab, as positive control antibodies. Behavioral studies included elevated plus maze, pole test, and Morris water maze. RESULTS: Our advanced antibody K11 showed a KD in the low nM range and > 400fold selectivity for isoD7-Aß compared to other Aß variants. By using this antibody, we demonstrated that formation of isoD7-Aß may occur after formation of aggregates; hence, the presence of the isoD7-modification differentiates aged Aß from newly formed peptides. Importantly, we also show that the Tottori mutation responsible for early-onset AD in a Japanese pedigree is characterized by massively accelerated formation of isoD7-Aß in cell culture. The presence of isoD7-Aß was verified by K11 in post mortem human cortex and 5xFAD mouse brain tissue. Passive immunization of 5xFAD mice resulted in a significant reduction of isoD7-Aß and total Aß in brain. Amelioration of cognitive impairment was demonstrated by Morris water maze, elevated plus maze, pole, and contextual fear conditioning tests. Interestingly, despite the lower abundance of the isoD7-Aß epitope, the application of anti-isoD7-Aß antibodies showed comparable treatment efficacy in terms of reduction of brain amyloid and spatial learning but did not result in an increase of plasma Aß concentration as observed with 3D6 treatment. CONCLUSIONS: The present study demonstrates, for the first time, that the antibody-mediated targeting of isoD7-modified Aß peptides leads to attenuation of AD-like amyloid pathology. In conjunction with previously published data on antibodies directed against pGlu-modified Aß, the results highlight the crucial role of modified Aß peptides in AD pathophysiology. Hence, the results also underscore the therapeutic potential of targeting modified amyloid species for defining tailored approaches in AD therapy.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Ácido Isoaspártico , Camundongos , Camundongos Transgênicos
5.
J Biol Chem ; 292(30): 12713-12724, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28623233

RESUMO

Alzheimer disease is associated with deposition of the amyloidogenic peptide Aß in the brain. Passive immunization using Aß-specific antibodies has been demonstrated to reduce amyloid deposition both in vitro and in vivo Because N-terminally truncated pyroglutamate (pE)-modified Aß species (AßpE3) exhibit enhanced aggregation potential and propensity to form toxic oligomers, they represent particularly attractive targets for antibody therapy. Here we present three separate monoclonal antibodies that specifically recognize AßpE3 with affinities of 1-10 nm and inhibit AßpE3 fibril formation in vitro. In vivo application of one of these resulted in improved memory in AßpE3 oligomer-treated mice. Crystal structures of Fab-AßpE3 complexes revealed two distinct binding modes for the peptide. Juxtaposition of pyroglutamate pE3 and the F4 side chain (the "pEF head") confers a pronounced bulky hydrophobic nature to the AßpE3 N terminus that might explain the enhanced aggregation properties of the modified peptide. The deep burial of the pEF head by two of the antibodies explains their high target specificity and low cross-reactivity, making them promising candidates for the development of clinical antibodies.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Imunoterapia , Ácido Pirrolidonocarboxílico/imunologia , Peptídeos beta-Amiloides/química , Animais , Células Cultivadas , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...