Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 250: 126267, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567526

RESUMO

Repeated-batch fermentation with fungal mycelia immobilized in plastic composite support (PCS) eliminates the lag phase during fermentation and improves metabolite productivity. The strategy is implemented herein, and a novel modified PCS is developed to enhance exopolysaccharide (EPS) production from the medicinal fungus Cordyceps militaris. A modified PCS (SYE + PCS) was made by compositing polypropylene (PP) with a nutrient mixture containing soybean hull, peptone, yeast extract, and minerals (SYE+). The use of SYE + PCS has consistent cell productivity throughout the multiple fermentation cycles, which resulted in a more higher cell productivity after second batch compared to unmodified PCS. The cell grown on SYE + PCS also generates a higher yield of EPS (3.36, 6.93, and 5.72 g/L in the first, second, and third fermentation cycles, respectively) up to three-fold higher than the cell immobilized on unmodified PCS. It is also worth noting that the EPS from mycelium grown on SYE + PCS contains up to 2.3-fold higher cordycepin than those on unmodified PCS. The presence of nutrients in SYE + PCS also affects the hydrophobicity and surface roughness of the PC, improving mycelial cell adhesion. This study also provides a preliminary antioxidant activity assessment of EPS from immobilized C. militaris grown with SYE + PCS.

2.
Int J Biol Macromol ; 231: 123322, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36690234

RESUMO

Numerous studies have reported various approaches for synthesizing phosphate-capturing adsorbents to mitigate eutrophication. Despite the efforts, concerns about production cost, the complexity of synthesis steps, environmental friendliness, and applicability in industrial settings continue to be a problem. Herein, phosphate-selective composite adsorbents were prepared by incorporating alginate (Alg) with MIL100 and MIL101 to produce the MIL100/Alg and MIL101/Alg beads, where Fe3+ served as the crosslinker. The unsaturated coordination bond of MIL100 and MIL101 serves as a Lewis acid that can attract phosphate. The adsorption equilibrium isotherm, uptake kinetics, and effects of operating parameters were studied. The phosphate adsorption capacity of MIL100/Alg (103.3 mg P/g) and MIL101/Alg (109.5 mg P/g) outperformed their constituting components at pH 6 and 30 °C. Detailed evaluation of the adsorbent porosity using N2 sorption reveals the formation of mesoporous structures on the Alg network upon incorporation of MIL100 and MIL101. The composite adsorbents have excellent selectivity toward anionic phosphate and can be easily regenerated. Phosphate adsorption by MIL100/Alg and MIL101/Alg was driven by electrostatic attraction and ligand exchange. Preliminary economic analysis on the synthesis of the adsorbents indicates that the composites, MIL100/Alg and MIL101/Alg, are economically viable adsorbents.


Assuntos
Alginatos , Poluentes Químicos da Água , Alginatos/química , Fosfatos/química , Água/química , Cinética , Adsorção , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
3.
Biomater Adv ; 146: 213269, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36696782

RESUMO

Tuberculosis (TB) is a disease caused by the M. tuberculosis bacteria infection and is listed as one of the deadliest diseases to date. Despite the development of antituberculosis drugs, the need for long-term drug consumption and low patient commitment are obstacles to the success of TB treatment. A continuous drug delivery system that has a long-term effect is needed to reduce routine drug consumption intervals, suppress infection, and prevent the emergence of drug-resistant strains of M. tuberculosis. For this reason, biomolecule metal-organic framework (BioMOF) with good biocompatibility, nontoxicity, bioactivity, and high stability are becoming potential drug carriers. This study used a bioactive protocatechuic acid (PCA) as organic linker to prepare copper-based BioMOF Cu-PCA under base-modulated conditions. Detailed crystal analysis by the powder X-ray diffraction demonstrated that the Cu-PCA, with a chemical formula of C14H16O13Cu3, crystalizes as triclinic in space group P1. Comprehensive physicochemical characterizations were provided using FTIR, SEM, XPS, TGA, EA, and N2 sorption. As a drug carrier, Cu-PCA showed a high maximum rifampicin (RIF) drug loading of 443.01 mg/g. Upon resuspension in PBS, the RIF and linkers release profile exhibited two-stage release kinetic profiles, which are well described by the Biphasic Dose Response (BiDoseResp) model. A complete release of these compounds (RIF and PCA) was achieved after ~9 h of mixing in PBS. Cu-PCA and RIF@Cu-PCA possessed antibacterial activity against Escherichia coli, and good biocompatibility is evidenced by the high viability of MH-S mice alveolar macrophage cells upon supplementations.


Assuntos
Estruturas Metalorgânicas , Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Rifampina/farmacologia , Rifampina/uso terapêutico , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/uso terapêutico , Cobre/farmacologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose/tratamento farmacológico , Portadores de Fármacos/química
4.
Chemosphere ; 291(Pt 2): 132759, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34742753

RESUMO

The development of environmentally friendly adsorbents has been extensively carried out to overcome the detrimental effects of heavy metal accumulation, which has persistently become a global ecological problem. In pursuit of generating eco-friendly adsorbents, a green method for synthesizing thiamine functionalized-Fe3O4 (FT) was developed in this study. A one-step chemical oxidation and functionalization technique was used to prepare FT using the ammonia-containing solvent. A molar ratio of ammonia:Fe:thiamine of 15:1:1 was shown to produce FT15 with high yield, adsorptivity, and purity. XRD, XPS, FTIR, SEM, and SQUID characterization of FT15 revealed the formation of superparamagnetic thiamine functionalized Fe3O4 in their particles. This superparamagneticity facilitates the easy recovery of FT15 particles from the waste-containing solution by using an external magnetic force. The batch adsorption of Cu(II) onto FT15 showed the best fit with the Sips adsorption isotherm model with a maximum adsorption capacity of 426.076 mg g-1, which is 5.69-fold higher capacity than the control unmodified Fe3O4 (F15). After five adsorption-desorption cycles, the FT15 can maintain up to 1.95-fold higher capacity than the freshly synthesized F15. Observation on the physicochemical properties of the post-adsorption materials showed the contribution of an amine group, pyrimidine ring, and the thiazolium group of thiamine in boosting its adsorption capacity. This study provides important findings to advance the adsorptivity of magnetic adsorbents with promising recoverability from aqueous solution by employing naturally available and environmentally friendly compounds such as thiamine.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Cobre , Concentração de Íons de Hidrogênio , Íons , Cinética , Nanopartículas Magnéticas de Óxido de Ferro , Tiamina , Poluentes Químicos da Água/análise
5.
Int J Biol Macromol ; 193(Pt A): 721-733, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34655594

RESUMO

The development of porous adsorbent materials from renewable resources for water and wastewater treatment has received considerable interest from academia and industry. This work aims to synthesize composite hydrogel from the combination of guar gum (a neutral galactomannan polysaccharide) and TiO2. The TiO2-embedded guar gum hydrogel (TiO2@GGH) was utilized to remove methylene blue through adsorption and photodegradation. The presence of TiO2 particles in the hydrogel matrix (TiO2@GGH) was confirmed by scanning electron microscopy-energy dispersive X-ray and X-ray photoelectron spectroscopy analysis. The mercury intrusion and N2 sorption isotherm indicate the macroporous structure of the TiO2@GGH composite, showing the presence of pore sizes ~420 µm. The dye removal efficiency of the GGH and TiO2@GGH was evaluated in batch mode at ambient temperature under varying pH. The effect of UV radiation on the dye removal efficiency was also assessed. The results demonstrated that the highest dye removal was recorded at pH 10, with the equilibrium condition achieved within 5 h. UV radiation was shown to enhance dye removal. The maximum adsorption capacity of TiO2@GGH is 198.61 mg g-1, while GGH sorbent is 188.53 mg g-1. The results imply that UV radiation gives rise to the photodegradation effect.


Assuntos
Galactanos/química , Hidrogéis/química , Mananas/química , Azul de Metileno/química , Nanocompostos/química , Fotólise , Gomas Vegetais/química , Titânio/química , Adsorção , Galactose/análogos & derivados , Microscopia Eletrônica de Varredura , Raios Ultravioleta , Purificação da Água/métodos
6.
Sci Rep ; 11(1): 12021, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103604

RESUMO

Nitrogen-grafting through the addition of glycine (Gly) was performed on a metal- phenolic network (MPN) of copper (Cu2+) and gallic acid (GA) to increase its adsorption capacity. Herein, we reported a one-step synthesis method of MPN, which was developed according to the metal-ligand complexation principle. The nitrogen grafted CuGA (Ng-CuGA) MPN was obtained by reacting Cu2+, GA, and Gly in an aqueous solution at a molar ratio of 1:1:1 and a pH of 8. Several physicochemical measurements, such as Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), N2 sorption, X-ray diffraction (XRD), and thermal gravimetry analysis (TGA), were done on Ng-CuGA to elucidate its characteristics. The analysis revealed that the Ng-CuGA has non-uniform spherical shaped morphology with a pore volume of 0.56 cc/g, a pore size of 23.25 nm, and thermal stability up to 205 °C. The applicational potential of the Ng-CuGA was determined based on its adsorption capacity against methylene blue (MB). The Ng-CuGA was able to adsorb 190.81 mg MB per g adsorbent at a pH of 6 and temperature of 30 °C, which is 1.53 times higher than the non-grafted CuGA. Detailed assessment of Ng-CuGA adsorption properties revealed their pH- and temperature-dependent nature. The adsorption capacity and affinity were found to decrease at a higher temperature, demonstrating the exothermic adsorption behavior.

7.
Sci Rep ; 10(1): 19212, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154425

RESUMO

A greener route to synthesize mesoporous copper-gallic acid metal-organic framework (CuGA MOF) than the conventional method using harmful DMF solvent was proposed in this study. Various synthesis attempts were conducted by modifying the synthesis conditions to produce CuGA MOF with comparable physical properties to a reference material (DMF-synthesized CuGA NMOF). The independent variables investigated include the molar ratio of NaOH to GA (1.1 to 4.4) and the synthesis temperature (30, 60, 90 °C). It was found that proper NaOH addition was crucial for suppressing the generation of copper oxide while maximizing the formation of CuGA MOF. On the other hand, the reaction temperature mainly affected the stability and adsorption potential of CuGA MOF. Reacting Cu, GA, and NaOH at a molar ratio of 1:1:2.2 and a temperature of 90 °C, produced mesoporous MOF (CuGA 90-2.2) with a surface area of 198.22 m2/g, a pore diameter of 8.6 nm, and a thermal stability of 219 °C. This MOF exhibited an excellent adsorption capacity for the removal of methylene blue (124.64 mg/g) and congo red (344.54 mg/g). The potential usage of CuGA 90-2.2 as a reusable adsorbent was demonstrated by its high adsorption efficiency (> 90%) after 5 adsorption-desorption cycles.

8.
J Hazard Mater ; 399: 123130, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937725

RESUMO

Organo-bentonite (OrB) was prepared by modifying bentonite with chitosan, and natural surfactant extracted from Sapindus rarak fruit. The physical alteration post-modification, performance of phosphates (Pi) adsorption, and possibility as a Pi-supplementation for plants of OrB were assessed and compared to acid-activated bentonite (AAB). The physical alteration due to modification of bentonite was characterized. SEM images were not indicating significant morphology differences between OrB and AAB. Existence of chitosan layers in OrB causes a decrease in basal spacing as characterized using XRD. The BET surface area of OrB was decreased compared to AAB due to pore coverage by chitosan. Adsorption studies reveal that OrB has a higher adsorption capacity towards Pi than AAB, which is 97.608 and 131.685 mg/g at 323 K for AAB and OrB, respectively. The H-shape isotherm curve indicates that chemisorption is dominantly controlling the adsorption. The isotherm and kinetics adsorption were well fitted to Langmuir and Pseudo-second order models, respectively. Performance of AAB and OrB as Pi-supplementation was assessed based on growth phenotypes of Arabidopsis thaliana; seedlings show that supplementation of Pi@AAB and Pi@OrB (at half doses) can promote primary root extension. These results also demonstrate the safety of direct disposal of the materials into the soil.


Assuntos
Bentonita , Poluentes Químicos da Água , Adsorção , Suplementos Nutricionais , Concentração de Íons de Hidrogênio , Cinética , Fosfatos , Termodinâmica , Poluentes Químicos da Água/análise
9.
Bioresour Technol ; 197: 30-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318244

RESUMO

Most previous studies reported in literature on biodiesel production from sludge were performed by acid catalyzed transesterification that required long reaction time (about 24h) and high methanol loading. The objective of this study was to investigate the in situ transesterification of sludge in subcritical mixture of methanol and acetic acid. At 250°C and a solvent (85% methanol and 15% acetic acid) to sludge ratio of 5 (mLg(-1)), a FAME yield of 30.11% can be achieved in 30min, compared to the yield of 35% obtained by the acid-catalyzed (4% H2SO4) transesterification which required 24h at 55°C and a methanol to sludge ratio of 25 (mLg(-1)). The method developed in this study avoided using mineral acid, significantly reduced reaction time and methanol loading to achieve comparable FAME yield.


Assuntos
Biocombustíveis/análise , Esterificação , Esgotos/química , Solventes/química , Catálise , Metanol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...