Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36980623

RESUMO

Epigenetic dysregulation characterized by aberrant DNA hypermethylation is a hallmark of cancer, and it can be targeted by hypomethylating agents (HMAs). Recently, we described the superior therapeutic efficacy of a novel HMA, namely, NTX-301, when used as a monotherapy and in combination with venetoclax in the treatment of acute myeloid leukemia. Following a previous study, we further explored the therapeutic properties of NTX-301 based on experimental investigations and integrative data analyses. Comprehensive sensitivity profiling revealed that NTX-301 primarily exerted anticancer effects against blood cancers and exhibited improved potency against a wide range of solid cancers. Subsequent assays showed that the superior efficacy of NTX-301 depended on its strong effects on cell cycle arrest, apoptosis, and differentiation. Due to its superior efficacy, low doses of NTX-301 achieved sufficiently substantial tumor regression in vivo. Multiomics analyses revealed the mechanisms of action (MoAs) of NTX-301 and linked these MoAs to markers of sensitivity to NTX-301 and to the demethylation activity of NTX-301 with high concordance. In conclusion, our findings provide a rationale for currently ongoing clinical trials of NTX-301 and will help guide the development of novel therapeutic options for cancer patients.

3.
Bioorg Med Chem Lett ; 27(20): 4606-4613, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28939121

RESUMO

Bromodomain and extra-terminal (BET) proteins, a class of epigenetic reader domains has emerged as a promising new target class for small molecule drug discovery for the treatment of cancer, inflammatory, and autoimmune diseases. Starting from in silico screening campaign, herein we report the discovery of novel BET inhibitors based on [1,2,4]triazolo[4,3-a]quinoxaline scaffold and their biological evaluation. The hit compound was optimized using the medicinal chemistry approach to the lead compound with excellent inhibitory activities against BRD4 in the binding assay. The substantial antiproliferative activities in human cancer cell lines, promising drug-like properties, and the selectivity for the BET family make the lead compound (13) as a novel BRD4 inhibitor motif for anti-cancer drug discovery.


Assuntos
Antineoplásicos/química , Neoplasias/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Quinoxalinas/química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-myc/metabolismo , Quinoxalinas/farmacocinética , Quinoxalinas/farmacologia , Quinoxalinas/uso terapêutico , Ratos , Relação Estrutura-Atividade , Triazóis/química
4.
Oncotarget ; 8(68): 112610-112622, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29348850

RESUMO

Hepatocellular carcinoma (HCC) is one of the most malignant tumors. Although various treatments, such as surgery and chemotherapy, have been developed, a novel alternative therapeutic approach for HCC therapy is urgently needed. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a promising anti-cancer agent, but many cancer cells are resistant to TRAIL-induced apoptosis. To help overcome TRAIL resistance in HCC cancer cells, we have identified novel chemical compounds that act as TRAIL sensitizers. We first identified the hit compound, TRT-0002, from a chemical library of 6,000 compounds using a previously developed high-throughput enzyme-linked immunosorbent assay (ELISA) screening system, which was based on the interaction of mitogen-activated protein kinase kinase 7 (MKK7) and TOR signaling pathway regulator-like (TIPRL) proteins and a cell viability assay. To increase the efficacy of this TRAIL sensitizer, we synthesized 280 analogs of TRT-0002 and finally identified two lead compounds (TRT-0029 and TRT-0173). Co-treating cultured Huh7 cells with either TRT-0029 or TRT-0173 and TRAIL resulted in TRAIL-induced apoptosis due to the inhibition of the MKK7-TIPRL interaction and subsequent phosphorylation of MKK7 and c-Jun N-terminal kinase (JNK). In vivo, injection of these compounds and TRAIL into HCC xenograft tumors resulted in tumor regression. Taken together, our results suggest that the identified lead compounds serve as TRAIL sensitizers and represent a novel strategy to overcome TRAIL resistance in HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...