Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35629632

RESUMO

Cold spray technique has been major improved in the last decades, for studying new properties for metals and alloys of aluminum, copper, nickel, and titanium, as well as steels, stainless steel and other types of alloys. Cold sprayed Ni/CrC coatings have the potential to provide a barrier as well as improved protection to steels. Fatigue characteristics of 52100 steel coated with Ni/Chrome-Carbide (Ni/CrC) powder mixture by using cold gas dynamic spray are investigated. Fatigue samples were subjected to symmetrically alternating, axially applied cyclic fatigue loading until failure. The test was stopped if a sample survived more than 5 × 106 cycles at the applied stress. Fracture surfaces for each sample were examined to investigate the behaviour of the coating both at high stress levels and at a high number of stress cycles. Scanning electron microscopy was used to assess the damage in the interface of the two materials. Good fatigue behaviour of the coating material was observed, especially at low stresses and a high number of cycles. Details of the crack initiation region, the stable crack propagation region and the sudden crack expansion region are identified for each sample. In most of the samples, the initiation of the crack occurred on the surface of the base material and propagated into the coating material. The possible effects of coatings on the initial deterioration of the base material and the reduction of the lifespan of the coated system were also investigated. The aim of the paper was to study the interface between the base material and the coating material at the fatigue analysis for different stresses, highlighting the appearance of cracks and the number of breaking cycles required for each sample.

2.
Sensors (Basel) ; 22(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408280

RESUMO

The torsional fatigue test determines the fatigue limit for a certain asymmetry coefficient of the cycle. The assessment of fatigue tests is performed on specialized machines. There are two types of torsion testing machines: universal machines that have the torsion component and specialized machines only for torsion testing. Nevertheless, no matter which proposed option we choose, the purchase prices for these testing machines or the values spent for self-management are quite high. This paper presented a device used for torsion fatigue testing, adaptable to a universal pulsating testing machine, designed to determine the torsion fatigue limit for different materials. The built device is simple and reliable, and therefore inexpensive. By using this device, we can determine the limit of the torsional fatigue after any stress cycle and we can use the parameters obtained from the universal machine to which it was attached. The torque and twisting angle of the test specimen during the test can be determined by calculation. The paper also presented an experimental method for determining shear strains based on calibration experiment, using a specimen on which strain gauges were mounted. The values taken from this calibration experiment were compared with those obtained from the theoretical calculation.


Assuntos
Titânio , Desenho de Equipamento , Teste de Materiais , Estresse Mecânico , Torque , Torção Mecânica
3.
Sensors (Basel) ; 20(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936665

RESUMO

The paper presents an extensometer designed to measure two mechanical strains at the same time-one from tensile load and the other from torsion load. Strain transducers provide different electric signals, which, after calibration, lead to the simultaneous measurement of linear (ε) and angular (γ) strains. Each of these two signals depends on the measured process and is not influenced by the other strain process. This extensometer is designed to be easily mounted on the sample with only two mounting points and can be used to measure the combined cyclical fatigue of tensile and torsional loadings. This extensometer has two bars - one rigid, reported at the resulting stress points, and one elastic and deformable. The elastic deformable bar has two beams with different orientations. When the sample is deformed, both beams are loaded by two bending moments (perpendicular to each other and both perpendicular on the longitudinal axis of the bars).

4.
Sensors (Basel) ; 12(6): 6978-94, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22969332

RESUMO

High speed weigh-in-motion (WIM) sensors are utilized as components of complex traffic monitoring and measurement systems. They should be able to determine the weights on wheels, axles and vehicle gross weights, and to help the classification of vehicles (depending on the number of axles). WIM sensors must meet the following main requirements: good accuracy, high endurance, low price and easy installation in the road structure. It is not advisable to use cheap materials in constructing these devices for lower prices, since the sensors are normally working in harsh environmental conditions such as temperatures between -40 °C and +70 °C, dust, temporary water immersion, shocks and vibrations. Consequently, less expensive manufacturing technologies are recommended. Because the installation cost in the road structure is high and proportional to the WIM sensor cross section (especially with its thickness), the device needs to be made as flat as possible. The WIM sensor model presented and analyzed in this paper uses a spring element equipped with strain gages. Using Finite Element Analysis (FEA), the authors have attempted to obtain a more sensitive, reliable, lower profile and overall cheaper elastic element for a new WIM sensor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...