Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(18): 22065-22072, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33929835

RESUMO

Strong and well-engineered interfaces between dissimilar materials are a hallmark of natural systems but have proven difficult to emulate in synthetic materials, where interfaces often act as points of failure. In this work, curing reactions that are triggered by exposure to different wavelengths of visible light are used to produce multimaterial objects with tough, well-defined interfaces between chemically distinct domains. Longer-wavelength (green) light selectively initiates acrylate-based radical polymerization, while shorter-wavelength (blue) light results in the simultaneous formation of epoxy and acrylate networks through orthogonal cationic and radical processes. The improved mechanical strength of these interfaces is hypothesized to arise from a continuous acrylate network that bridges domains. Using printed test structures, interfaces were characterized through spatial resolution of their chemical composition, localized mechanical properties, and bulk fracture strength. This wavelength-selective photocuring of interpenetrating polymer networks is a promising strategy for increasing the mechanical performance of 3D-printed objects and expanding light-based additive manufacturing technologies.

2.
ACS Appl Mater Interfaces ; 12(48): 54075-54082, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33210539

RESUMO

We report a visible light-responsive bilayer actuator driven by the photothermal properties of a unique molecular photoswitch: donor-acceptor Stenhouse adduct (DASA). We demonstrate a synthetic platform to chemically conjugate DASA to a load-bearing poly(hexyl methacrylate) (PHMA) matrix via Diels-Alder click chemistry that enables access to stimuli-responsive materials on scale. By taking advantage of the negative photochromism and switching kinetics of DASA, we can tune the thermal expansion and actuation performance of DASA-PHMA under constant light intensity. This extends the capabilities of currently available responsive soft actuators for which mechanical response is determined exclusively by light intensity and enables the use of abundant broadband light sources to trigger tunable responses. We demonstrate actuation performance using a visible light-powered cantilever capable of lifting weight against gravity as well as a simple crawler. These results add a new strategy to the toolbox of tunable photothermal actuation by using the molecular photoswitch DASA.

3.
Nat Commun ; 11(1): 2599, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32451397

RESUMO

We identify unique features of a highly-absorbing negatively photochromic molecular switch, donor acceptor Stenhouse adduct (DASA), that enable its use for self-regulating light-activated control of fluid flow. Leveraging features of DASA's chemical properties and solvent-dependent reaction kinetics, we demonstrate its use for photo-controlled Rayleigh-Bénard convection to generate dynamic, self-regulating flows with unparalleled fluid velocities (~mm s-1) simply by illuminating the fluid with visible light. The exceptional absorbance of DASAs in solution, uniquely controllable reaction kinetics and resulting spatially-confined photothermal flows demonstrate the ways in which photoswitches present exciting opportunities for their use in optofluidics applications requiring tunable flow behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...