Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 231(Pt 1): 116103, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178745

RESUMO

Copper and dysprosium doped NiFe2O4 magnetic nanomaterials, Ni1-xCuxDyyFe2-yO4 (x = y = 0.00, 0.01, 0.02, 0.03), was prepared by utilizing sol-gel auto-combustion approach to inspect the photodegradation of methylene blue (MB) pollutant and also, to perform the electrocatalytic water splitting and antibacterial studies. The XRD analysis reveal the growth of a single-phase spinel cubic structure for produced nanomaterials. The magnetic traits show an increasing trend in saturation magnetization (Ms) from 40.71 to 47.90 emu/g along with a decreasing behaviour of coercivity from 158.09 to 156.34 Oe at lower and higher Cu and Dy doping content (x = 0.0-0.01). The study of optical band gap values of copper and dysprosium-doped nickel nanomaterials decreased from 1.71 to 1.52 eV. This will increase the photocatalytic degradation of methylene blue pollutant from 88.57% to 93.67% under natural sunlight, respectively. These findings clearly show that under natural sunlight irradiation for 60 min, the produced N4 photocatalyst displays the greatest photocatalytic activity with a maximum removal percentage of 93.67%. The electrocatalytic characteristics of produced magnetic nanomaterials for both HER and OER were examined with a Calomel electrode taking as a reference in a 0.5 N H2SO4 and 0.1 N KOH electrolyte. The N4 electrode demonstrated considerable 10 and 0.024 mA/cm2 of current density, with onset potentials of 0.99 and 1.5 V for HER and OER and also, have tafel slopes of 58.04 and 295 mV/dec, respectively. The antibacterial activity for produced magnetic nanomaterials was examined against various bacteria (Bacillus subtilis, Staphylococcus aureus, S. typhi, and P. aeruginosa) in which N3 sample produced significant inhibition zone against gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) but no zone of inhibition against gram-negative bacteria (S. typhi and P. aeruginosa). With all these superior traits, the produced magnetic nanomaterials are highly valuable for the wastewater remediation, hydrogen evolution, and biological applications.


Assuntos
Cobre , Nanopartículas de Magnetita , Azul de Metileno/química , Disprósio , Antibacterianos/farmacologia , Antibacterianos/química
2.
J Nanosci Nanotechnol ; 21(12): 6094-6100, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229809

RESUMO

In this article, we propose high-performance colorimetric detection of Hg+2 using silver nanoprisms. The spherical and triangular AgNPs were synthesized using varied concentration of NaBH4. Pristine AgNPs without any further modification were used for the detection of various metal ions including Hg2+, Pb2+, Cl-, Cd2+, Co2+, Cu2+, Ba2+, Pb2+, Cr3+, Cr2O2-7 , Fe2+, Fe3+ etc. AgNPs were not only selective in detecting the ions of Cl- and Hg+2 ions but also highly sensitive. Minimum detection limit was observed to be as low as 10-7 ppm for both Hg+2 and Cl-. Water samples collected from various locations detected for the presence of various heavy metals. Silver nanoprisms owing to their surface plasmon resonance exhibit highly selective tendency towards detection against Hg+2.


Assuntos
Mercúrio , Nanopartículas Metálicas , Colorimetria , Íons , Prata
3.
Int J Biol Macromol ; 159: 243-249, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32416302

RESUMO

Faba bean starch was crosslinked (CL) at different levels (1, 3 & 5%) using sodium trimetaphosphate and studied for physicochemical, thermal, pasting and in vitro digestibility characteristics. Further, films were prepared from these starches and characterized for moisture content, thickness, water solubility, opacity, water vapor permeability (WVP) and mechanical properties. Amylose content, swelling power and solubility decreased after modification. CL resulted in decrease in peak viscosity (PV) whereas pasting temperature increased; CL (5%) showed the lowest PV (6474 mPa.s). Steady shear properties showed flow behavior index values <1 for starch pastes, indicating pseudoplastic and shear-thinning behavior. Thermal properties of CL starches showed higher transition temperatures and enthalpy of gelatinization (ΔHgel) as compared to native starch. ΔHgel values of CL starches ranged from 10.70 to 14.20 J/g whereas for native starch, the value was 9.47 J/g. CL resulted in increased resistant starch (from 49.8 to 61.1%), the highest value was for CL (5%). CL starch films exhibited lower moisture content, water solubility and WVP. Film thickness, however, was not affected by modification. CL (5%) starch film showed the highest tensile strength (14.28 MPa) and the lowest elongation at break (25.62%). CL resulted in improved mechanical and barrier properties of starch films.


Assuntos
Fenômenos Químicos , Membranas Artificiais , Amido/química , Vicia faba/química , Amilose/química , Reagentes de Ligações Cruzadas/química , Hidrólise , Reologia , Solubilidade , Amido/isolamento & purificação , Vapor , Resistência à Tração , Termodinâmica , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...