Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 620(7974): 643-650, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37437602

RESUMO

In addition to its canonical function of protection from pathogens, the immune system can also alter behaviour1,2. The scope and mechanisms of behavioural modifications by the immune system are not yet well understood. Here, using mouse models of food allergy, we show that allergic sensitization drives antigen-specific avoidance behaviour. Allergen ingestion activates brain areas involved in the response to aversive stimuli, including the nucleus of tractus solitarius, parabrachial nucleus and central amygdala. Allergen avoidance requires immunoglobulin E (IgE) antibodies and mast cells but precedes the development of gut allergic inflammation. The ability of allergen-specific IgE and mast cells to promote avoidance requires cysteinyl leukotrienes and growth and differentiation factor 15. Finally, a comparison of C57BL/6 and BALB/c mouse strains revealed a strong effect of the genetic background on the avoidance behaviour. These findings thus point to antigen-specific behavioural modifications that probably evolved to promote niche selection to avoid unfavourable environments.


Assuntos
Alérgenos , Aprendizagem da Esquiva , Hipersensibilidade Alimentar , Animais , Camundongos , Alérgenos/imunologia , Aprendizagem da Esquiva/fisiologia , Núcleo Central da Amígdala/fisiologia , Modelos Animais de Doenças , Hipersensibilidade Alimentar/genética , Hipersensibilidade Alimentar/imunologia , Imunoglobulina E/imunologia , Intestinos/imunologia , Mastócitos/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Núcleos Parabraquiais/fisiologia , Núcleo Solitário/fisiologia
2.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36712030

RESUMO

In addition to its canonical function in protecting from pathogens, the immune system can also promote behavioural alterations 1â€"3 . The scope and mechanisms of behavioural modifications by the immune system are not yet well understood. Using a mouse food allergy model, here we show that allergic sensitization drives antigen-specific behavioural aversion. Allergen ingestion activates brain areas involved in the response to aversive stimuli, including the nucleus of tractus solitarius, parabrachial nucleus, and central amygdala. Food aversion requires IgE antibodies and mast cells but precedes the development of gut allergic inflammation. The ability of allergen-specific IgE and mast cells to promote aversion requires leukotrienes and growth and differentiation factor 15 (GDF15). In addition to allergen-induced aversion, we find that lipopolysaccharide-induced inflammation also resulted in IgE-dependent aversive behaviour. These findings thus point to antigen-specific behavioural modifications that likely evolved to promote niche selection to avoid unfavourable environments.

3.
Sci Rep ; 8(1): 16994, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451893

RESUMO

Limited access to human islets has prompted the development of human beta cell models. The human beta cell lines EndoC-ßH1 and EndoC-ßH2 are increasingly used by the research community. However, little is known of their electrophysiological and secretory properties. Here, we monitored parameters that constitute the glucose-triggering pathway of insulin release. Both cell lines respond to glucose (6 and 20 mM) with 2- to 3-fold stimulation of insulin secretion which correlated with an elevation of [Ca2+]i, membrane depolarisation and increased action potential firing. Similar to human primary beta cells, KATP channel activity is low at 1 mM glucose and is further reduced upon increasing glucose concentration; an effect that was mimicked by the KATP channel blocker tolbutamide. The upstroke of the action potentials reflects the activation of Ca2+ channels with some small contribution of TTX-sensitive Na+ channels. The repolarisation involves activation of voltage-gated Kv2.2 channels and large-conductance Ca2+-activated K+ channels. Exocytosis presented a similar kinetics to human primary beta cells. The ultrastructure of these cells shows insulin vesicles composed of an electron-dense core surrounded by a thin clear halo. We conclude that the EndoC-ßH1 and -ßH2 cells share many features of primary human ß-cells and thus represent a useful experimental model.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Exocitose , Glucose/farmacologia , Secreção de Insulina , Células Secretoras de Insulina/fisiologia , Insulina/metabolismo , Células Cultivadas , Fenômenos Eletrofisiológicos , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Edulcorantes/farmacologia
5.
J Physiol ; 596(9): 1601-1626, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29441586

RESUMO

KEY POINTS: Na+ current inactivation is biphasic in insulin-secreting cells, proceeding with two voltage dependences that are half-maximal at ∼-100 mV and -60 mV. Inactivation of voltage-gated Na+ (NaV ) channels occurs at ∼30 mV more negative voltages in insulin-secreting Ins1 and primary ß-cells than in HEK, CHO or glucagon-secreting αTC1-6 cells. The difference in inactivation between Ins1 and non-ß-cells persists in the inside-out patch configuration, discounting an involvement of a diffusible factor. In Ins1 cells and primary ß-cells, but not in HEK cells, inactivation of a single NaV subtype is biphasic and follows two voltage dependences separated by 30-40 mV. We propose that NaV channels adopt different inactivation behaviours depending on the local membrane environment. ABSTRACT: Pancreatic ß-cells are equipped with voltage-gated Na+ channels that undergo biphasic voltage-dependent steady-state inactivation. A small Na+ current component (10-15%) inactivates over physiological membrane potentials and contributes to action potential firing. However, the major Na+ channel component is completely inactivated at -90 to -80 mV and is therefore inactive in the ß-cell. It has been proposed that the biphasic inactivation reflects the contribution of different NaV α-subunits. We tested this possibility by expression of TTX-resistant variants of the NaV subunits found in ß-cells (NaV 1.3, NaV 1.6 and NaV 1.7) in insulin-secreting Ins1 cells and in non-ß-cells (including HEK and CHO cells). We found that all NaV subunits inactivated at 20-30 mV more negative membrane potentials in Ins1 cells than in HEK or CHO cells. The more negative inactivation in Ins1 cells does not involve a diffusible intracellular factor because the difference between Ins1 and CHO persisted after excision of the membrane. NaV 1.7 inactivated at 15--20 mV more negative membrane potentials than NaV 1.3 and NaV 1.6 in Ins1 cells but this small difference is insufficient to solely explain the biphasic inactivation in Ins1 cells. In Ins1 cells, but never in the other cell types, widely different components of NaV inactivation (separated by 30 mV) were also observed following expression of a single type of NaV α-subunit. The more positive component exhibited a voltage dependence of inactivation similar to that found in HEK and CHO cells. We propose that biphasic NaV inactivation in insulin-secreting cells reflects insertion of channels in membrane domains that differ with regard to lipid and/or membrane protein composition.


Assuntos
Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/química , Canal de Sódio Disparado por Voltagem NAV1.6/química , Canal de Sódio Disparado por Voltagem NAV1.7/química , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais de Ação , Sequência de Aminoácidos , Animais , Cricetinae , Cricetulus , Fenômenos Eletrofisiológicos , Células HEK293 , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Insulinoma/tratamento farmacológico , Insulinoma/patologia , Potenciais da Membrana , Camundongos , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Ratos , Homologia de Sequência , Sódio/metabolismo
6.
Diabetes Obes Metab ; 20(3): 571-581, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28892258

RESUMO

AIMS: The gut hormone peptide tyrosine tyrosine (PYY) is critical for maintaining islet integrity and restoring islet function following Roux-en-Y gastric bypass (RYGB). The expression of PYY and its receptors (NPYRs) in islets has been documented but not fully characterized. Modulation of islet PYY by the proteolytic enzyme dipeptidyl peptidase IV (DPP-IV) has not been investigated and the impact of DPP-IV inhibition on islet PYY function remains unexplored. Here we have addressed these gaps and their effects on glucose-stimulated insulin secretion (GSIS). We have also investigated changes in pancreatic PYY in diabetes and following RYGB. METHODS: Immunohistochemistry and gene expression analysis were used to assess PYY, NPYRs and DPP-IV expression in rodent and human islets. DPP-IV activity inhibition was achieved by sitagliptin. Secretion studies were used to test PYY and the effects of sitagliptin on insulin release, and the involvement of GLP-1. Radioimmunoassays were used to measure hormone content in islets. RESULTS: PYY and DPP-IV localized in different cell types in islets while NPYR expression was confined to the beta-cells. Chronic PYY application enhanced GSIS in rodent and diabetic human islets. DPP-IV inhibition by sitagliptin potentiated GSIS; this was mediated by locally-produced PYY, and not GLP-1. Pancreatic PYY was markedly reduced in diabetes. RYGB strongly increased islet PYY content, but did not lead to full restoration of pancreatic GLP-1 levels. CONCLUSION: Local regulation of pancreatic PYY, rather than GLP-1, by DPP-IV inhibition or RYGB can directly modulate the insulin secretory response to glucose, indicating a novel role of pancreatic PYY in diabetes and weight-loss surgery.


Assuntos
Dipeptídeos/metabolismo , Derivação Gástrica , Hipoglicemiantes/farmacologia , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Fosfato de Sitagliptina/farmacologia , Animais , Diabetes Mellitus Tipo 2/fisiopatologia , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Relação Dose-Resposta a Droga , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Masculino , Camundongos , Ratos Wistar , Receptores de Neuropeptídeo Y/metabolismo
7.
Diabetes ; 65(7): 1952-61, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26993066

RESUMO

The transcription factor Sox4 has been proposed to underlie the increased type 2 diabetes risk linked to an intronic single nucleotide polymorphism in CDKAL1 In a mouse model expressing a mutant form of Sox4, glucose-induced insulin secretion is reduced by 40% despite normal intracellular Ca(2+) signaling and depolarization-evoked exocytosis. This paradox is explained by a fourfold increase in kiss-and-run exocytosis (as determined by single-granule exocytosis measurements) in which the fusion pore connecting the granule lumen to the exterior expands to a diameter of only 2 nm, which does not allow the exit of insulin. Microarray analysis indicated that this correlated with an increased expression of the exocytosis-regulating protein Stxbp6. In a large collection of human islet preparations (n = 63), STXBP6 expression and glucose-induced insulin secretion correlated positively and negatively with SOX4 expression, respectively. Overexpression of SOX4 in the human insulin-secreting cell EndoC-ßH2 interfered with granule emptying and inhibited hormone release, the latter effect reversed by silencing STXBP6 These data suggest that increased SOX4 expression inhibits insulin secretion and increased diabetes risk by the upregulation of STXBP6 and an increase in kiss-and-run exocytosis at the expense of full fusion. We propose that pharmacological interventions promoting fusion pore expansion may be effective in diabetes therapy.


Assuntos
Exocitose/fisiologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição SOXC/genética , Animais , Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Inativação Gênica , Humanos , Secreção de Insulina , Masculino , Camundongos , Fatores de Transcrição SOXC/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...