Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Chem Biol ; 16(1): 15-23, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819272

RESUMO

The anticancer agent indisulam inhibits cell proliferation by causing degradation of RBM39, an essential mRNA splicing factor. Indisulam promotes an interaction between RBM39 and the DCAF15 E3 ligase substrate receptor, leading to RBM39 ubiquitination and proteasome-mediated degradation. To delineate the precise mechanism by which indisulam mediates the DCAF15-RBM39 interaction, we solved the DCAF15-DDB1-DDA1-indisulam-RBM39(RRM2) complex structure to a resolution of 2.3 Å. DCAF15 has a distinct topology that embraces the RBM39(RRM2) domain largely via non-polar interactions, and indisulam binds between DCAF15 and RBM39(RRM2), coordinating additional interactions between the two proteins. Studies with RBM39 point mutants and indisulam analogs validated the structural model and defined the RBM39 α-helical degron motif. The degron is found only in RBM23 and RBM39, and only these proteins were detectably downregulated in indisulam-treated HCT116 cells. This work further explains how indisulam induces RBM39 degradation and defines the challenge of harnessing DCAF15 to degrade additional targets.


Assuntos
Antineoplásicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Ligação a RNA/química , Sulfonamidas/farmacologia , Motivos de Aminoácidos , Calorimetria , Clonagem Molecular , Fluorometria , Células HCT116 , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinética , Proteínas Nucleares/metabolismo , Peptídeos/química , Mutação Puntual , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteoma , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Protein Expr Purif ; 147: 38-48, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29475084

RESUMO

Myocilin (MYOC) is a secreted protein found in human aqueous humor (AH) and mutations in the MYOC gene are the most common mutation observed in glaucoma patients. Human AH analyzed under non-reducing conditions suggests that MYOC is not normally found in a monomeric form, but rather is predominantly dimeric. Although MYOC was first reported almost 20 years ago, a technical challenge still faced by researchers is an inability to isolate full-length MYOC protein for experimental purposes. Herein we describe two methods by which to isolate sufficient quantities of human full-length MYOC protein from mammalian cells. One method involved identification of a cell line (HeLa S3) that would secrete full-length protein (15 mg/L) while the second method involved a purification approach from 293 cells requiring identification and modification of an internal MYOC cleavage site (Glu214/Leu215). MYOC protein yield from 293 cells was improved by mutation of two MYOC N-terminal cysteines (C47 and C61) to serines. Analytical size exclusion chromatography of our full-length MYOC protein purified from 293 cells indicated that it is predominantly dimeric and we propose a structure for the MYOC dimer. We hope that by providing methods to obtain MYOC protein, researchers will be able to utilize the protein to obtain new insights into MYOC biology. The ultimate goal of MYOC research is to better understand this target so we can help the patient that carries a MYOC mutation retain vision and maintain quality of life.


Assuntos
Humor Aquoso/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Olho/química , Glicoproteínas/química , Multimerização Proteica , Animais , Sítios de Ligação/genética , Western Blotting , Células COS , Linhagem Celular , Chlorocebus aethiops , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Mutação , Conformação Proteica
4.
Biochemistry ; 55(11): 1645-51, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26813693

RESUMO

The protein methyltransferase (PMT) SETDB1 is a strong candidate oncogene in melanoma and lung carcinomas. SETDB1 methylates lysine 9 of histone 3 (H3K9), utilizing S-adenosylmethionine (SAM) as the methyl donor and its catalytic activity, has been reported to be regulated by a partner protein ATF7IP. Here, we examine the contribution of ATF7IP to the in vitro activity and substrate specificity of SETDB1. SETDB1 and ATF7IP were co-expressed and 1:1 stoichiometric complexes were purified for comparison against SETDB1 enzyme alone. We employed both radiometric flashplate-based and SAMDI mass spectrometry assays to follow methylation on histone H3 15-mer peptides, where lysine 9 was either unmodified, monomethylated, or dimethylated. Results show that SETDB1 and the SETDB1:ATF7IP complex efficiently catalyze both monomethylation and dimethylation of H3K9 peptide substrates. The activity of the binary complex was 4-fold lower than SETDB1 alone. This difference was due to a decrease in the value of kcat as the substrate KM values were comparable between SETDB1 and the SETDB1:ATF7IP complex. H3K9 methylation by SETDB1 occurred in a distributive manner, and this too was unaffected by the presence of ATF7IP. This finding is important as H3K9 can be methylated by HMTs other than SETDB1 and a distributive mechanism would allow for interplay between multiple HMTs on H3K9. Our results indicate that ATF7IP does not directly modulate SETDB1 catalytic activity, suggesting alternate roles, such as affecting cellular localization or mediating interaction with additional binding partners.


Assuntos
Histonas/química , Complexos Multiproteicos/química , Proteínas Metiltransferases/química , S-Adenosilmetionina/química , Fatores de Transcrição/química , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Humanos , Espectrometria de Massas , Metilação , Complexos Multiproteicos/metabolismo , Proteínas Metiltransferases/metabolismo , Proteínas Repressoras , S-Adenosilmetionina/metabolismo , Especificidade por Substrato/fisiologia , Fatores de Transcrição/metabolismo
5.
J Biol Chem ; 288(24): 17408-19, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23632026

RESUMO

The immunoglobulin new antigen receptors (IgNARs) are a class of Ig-like molecules of the shark immune system that exist as heavy chain-only homodimers and bind antigens by their single domain variable regions (V-NARs). Following shark immunization and/or in vitro selection, V-NARs can be generated as soluble, stable, and specific high affinity monomeric binding proteins of ∼12 kDa. We have previously isolated a V-NAR from an immunized spiny dogfish shark, named E06, that binds specifically and with high affinity to human, mouse, and rat serum albumins. Humanization of E06 was carried out by converting over 60% of non-complementarity-determining region residues to those of a human germ line Vκ1 sequence, DPK9. The resulting huE06 molecules have largely retained the specificity and affinity of antigen binding of the parental V-NAR. Crystal structures of the shark E06 and its humanized variant (huE06 v1.1) in complex with human serum albumin (HSA) were determined at 3- and 2.3-Å resolution, respectively. The huE06 v1.1 molecule retained all but one amino acid residues involved in the binding site for HSA. Structural analysis of these V-NARs has revealed an unusual variable domain-antigen interaction. E06 interacts with HSA in an atypical mode that utilizes extensive framework contacts in addition to complementarity-determining regions that has not been seen previously in V-NARs. On the basis of the structure, the roles of various elements of the molecule are described with respect to antigen binding and V-NAR stability. This information broadens the general understanding of antigen recognition and provides a framework for further design and humanization of shark IgNARs.


Assuntos
Anticorpos Monoclonais Humanizados/química , Tubarões/imunologia , Anticorpos de Cadeia Única/química , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Cristalografia por Raios X , Proteínas de Peixes , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Engenharia de Proteínas , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Ratos , Homologia de Sequência de Aminoácidos , Albumina Sérica/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...