Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(44): e2306088, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37581205

RESUMO

Materials with ultralow thermal conductivity are crucial to many technological applications, including thermoelectric energy harvesting, thermal barrier coatings, and optoelectronics. Liquid-like mobile ions are effective at disrupting phonon propagation, hence suppressing thermal conduction. However, high ionic mobility leads to the degradation of liquid-like thermoelectric materials under operating conditions due to ion migration and metal deposition at the cathode, hindering their practical application. Here, a new type of behavior, incipient ionic conduction, which leads to ultralow thermal conductivity, while overcoming the issues of degradation inherent in liquid-like materials, is identified. Using neutron spectroscopy and molecular dynamics (MD) simulations, it is demonstrated that in tetrahedrite, an established thermoelectric material with a remarkably low thermal conductivity, copper ions, although mobile above 200 K, are predominantly confined to cages within the crystal structure. Hence the undesirable migration of cations to the cathode can be avoided. These findings unveil a new approach for the design of materials with ultralow thermal conductivity, by exploring systems in which incipient ionic conduction may be present.

2.
J Phys Condens Matter ; 35(7)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36541549

RESUMO

The doping of CdTe with As is a method which is thought to increase cell efficiency by increasing electron hole concentrations. This doping relies on the diffusion of As through CdTe resulting in AsTesubstitution. The potential effectiveness of this is considered through kinetic and electronic properties calculations in both bulk and Σ3 and Σ9 grain boundaries using Density Functional Theory. In bulk zinc-blende CdTe, isolated As diffuses with barriers <0.5 eV and with similar barriers through wurtzite structured CdTe, generated by stacking faults, suggesting that As will not be trapped at the stacking faults and hence the transport of isolated As will be unhindered in bulk CdTe. Substitutional arsenic in bulk CdTe has little effect on the band gap except when it is positively charged in the AX-centre position or occurring as a di-interstitial. However in contrast to the case of chlorine, arsenic present in the grain boundaries introduces defect states into the band gap. This suggests that a doping strategy whereby the grain boundaries are first saturated with chlorine, before single arsenic atoms are introduced, might be more beneficial.

3.
Phys Chem Chem Phys ; 24(35): 20709-20720, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35912959

RESUMO

This study uses molecular dynamics and barrier searching methods to investigate the diffusion and clustering of helium in plutonium dioxide. Such fundamental understanding of helium behaviour is required because radiogenic helium generated from the alpha decay of Pu nuclei can accumulate over time and storage of spent nuclear fuel needs to be safe and secure. The results show that in perfect PuO2, interstitial He is not mobile over nanosecond time scales at temperatures below 1500 K with the lowest diffusion barrier being 2.4 eV. Above this temperature O vacancies can form and diffusion increases. The He diffusion barrier drops to 0.6 eV when oxygen vacancies are present. High temperature simulations show that the key He diffusion mechanism is oxygen vacancy assisted inter-site hopping rather than the direct path between adjacent interstitial sites. Unlike oxygen vacancies, plutonium vacancies act as helium traps. However, isolated substitutional He at Pu sites can be easily ejected through displacement by neighbouring interstitial Pu atoms. High temperature MD simulations show that helium can diffuse into clusters with the majority of helium clusters which form over nanosecond time scales having a He : vacancy ratio below 1 : 1. Further static calculations show that a ∼3.5 : 1 He : vacancy ratio is the largest possible for an energetically stable helium cluster. Schottky defects act as seed points for He cluster growth and a high local concentrations of He can create such defects which then pin the growing He cluster.

5.
Phys Chem Chem Phys ; 23(46): 26135-26150, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792045

RESUMO

Thermally activated delayed fluorescence (TADF) is a current promising route for generating highly efficient light-emitting devices. However, the design process of new chromophores is hampered by the complicated underlying photophysics. In this work, four closely related donor-π-acceptor-π-donor systems are investigated, two of which were synthesised previously, with the aim of elucidating their varying effectiveness for TADF. We outline that the frontier orbitals are insufficient for discriminating between the molecules. Subsequently, a detailed analysis of the excited states at a correlated ab initio level highlights the presence of a number of closely spaced singlet and triplet states of varying character. Results from five density functionals are compared against this reference revealing dramatic changes in, both, excited state energies and wavefunctions following variations in the amount of Hartree-Fock exchange included. Excited-state minima are optimised in solution showing the crucial role of structural variations and symmetry breaking for producing a strongly emissive S1 state. The adiabatic singlet-triplet gaps thus obtained depend strongly on the range separation parameter used in the hybrid density functional calculations. More generally, this work highlights intricate differences present between singlet and triplet excited state wavefunctions and the challenges in describing them accurately.

6.
Nat Commun ; 12(1): 4938, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426582

RESUMO

The conversion efficiency of as-deposited, CdTe solar cells is poor and typically less than 5%. A CdCl2 activation treatment increases this to up to 22%. Studies have shown that stacking faults (SFs) are removed and the grain boundaries (GBs) are decorated with chlorine. Thus, SF removal and device efficiency are strongly correlated but whether this is direct or indirect has not been established. Here we explain the passivation responsible for the increase in efficiency but also crucially elucidate the associated SF removal mechanism. The effect of chlorine on a model system containing a SF and two GBs is investigated using density functional theory. The proposed SF removal mechanisms are feasible at the 400 ∘C treatment temperature. It is concluded that the efficiency increase is due to electronic effects in the GBs while SF removal is a by-product of the saturation of the GB with chlorine but is a key signal that sufficient chlorine is present for passivation to occur.

7.
Nat Commun ; 11(1): 6392, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319782

RESUMO

Solid-state batteries are a proposed route to safely achieving high energy densities, yet this architecture faces challenges arising from interfacial issues between the electrode and solid electrolyte. Here we develop a novel family of double perovskites, Li1.5La1.5MO6 (M = W6+, Te6+), where an uncommon lithium-ion distribution enables macroscopic ion diffusion and tailored design of the composition allows us to switch functionality to either a negative electrode or a solid electrolyte. Introduction of tungsten allows reversible lithium-ion intercalation below 1 V, enabling application as an anode (initial specific capacity >200 mAh g-1 with remarkably low volume change of ∼0.2%). By contrast, substitution of tungsten with tellurium induces redox stability, directing the functionality of the perovskite towards a solid-state electrolyte with electrochemical stability up to 5 V and a low activation energy barrier (<0.2 eV) for microscopic lithium-ion diffusion. Characterisation across multiple length- and time-scales allows interrogation of the structure-property relationships in these materials and preliminary examination of a solid-state cell employing both compositions suggests lattice-matching avenues show promise for all-solid-state batteries.

8.
Proc Math Phys Eng Sci ; 476(2239): 20200056, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32821240

RESUMO

Cadmium telluride (CdTe) solar cells are deposited in current production using evaporation-based tech- niques. Fabricating CdTe solar cells using magnetron sputtering would have the advantage of being more cost-efficient. Here, we show that such deposition results in the incorporation of the magnetron working gas Ar, within the films. Post deposition processing with CdCl2 improves cell efficiency and during which stacking faults are removed. The Ar then accumulates into clusters leading to the creation of voids and blisters on the surface. Using molecular dynamics, the penetration threshold energies are determined for both Ar and Xe, with CdTe in both zinc-blende and wurtzite phases. These calculations show that more Ar than Xe can penetrate into the growing film with most penetration across the (111) surface. The mechanisms and energy barriers for interstitial Ar and Xe diffusion in zinc-blende are determined. Barriers are reduced near existing clusters, increasing the probability of capture-based cluster growth. Barriers in wurtzite are higher with non-Arrhenius behaviour observed. This provides an explanation for the increase in the size of voids observed after stacking fault removal. Blister exfoliation was also modelled, showing the formation of shallow craters with a raised rim.

9.
J Phys Condens Matter ; 32(12): 125702, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31770733

RESUMO

Recent advancements in CdTe photovoltaic efficiency have come from selenium grading, which reduces the band gap and significantly improves carrier lifetimes. In this work, density functional theory calculations were performed to understand the structural and electronic effects of Se alloying. Special quasirandom structures were used to simulate a random distribution of Se anions. Lattice parameters decrease linearly as Se concentration increases in line with Vegard's Law. The simulated band gap bowing shows strong agreement with experimental values. Selenium, by itself, does not introduce any defect states in the band gap and no significant changes to band structure around the [Formula: see text] point are found. Band offset values suggest a reduction of recombination across the CdSeTe/MgZnO interface at [Formula: see text], which corresponds with the Se concentration used experimentally. Band structure analysis of two cases [Formula: see text] and x = 0.4375, shows a change from dominant Cd/Te contributions in the conduction band minimum to Cd/Se contributions as Se concentration is increased, hinting at a change in optical transition characteristics. Further calculations of optical absorption spectra suggest a reduced transition probability particularly at higher energies, which confirms experimental predictions that Se passivates the non-radiative recombination centres.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...