Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 4(1): ycae068, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38800124

RESUMO

Particulate carbon (C) degradation in soils is a critical process in the global C cycle governing greenhouse gas fluxes and C storage. Millimeter-scale soil aggregates impose strong controls on particulate C degradation by inducing chemical gradients of e.g. oxygen, as well as limiting microbial mobility in pore structures. To date, experimental models of soil aggregates have incorporated porosity and chemical gradients but not particulate C. Here, we demonstrate a proof-of-concept encapsulating microbial cells and particulate C substrates in hydrogel matrices as a novel experimental model for soil aggregates. Ruminiclostridium cellulolyticum was co-encapsulated with cellulose in millimeter-scale polyethyleneglycol-dimethacrylate (PEGDMA) hydrogel beads. Microbial activity was delayed in hydrogel-encapsulated conditions, with cellulose degradation and fermentation activity being observed after 13 days of incubation. Unexpectedly, hydrogel encapsulation shifted product formation of R. cellulolyticum from an ethanol-lactate-acetate mixture to an acetate-dominated product profile. Fluorescence microscopy enabled simultaneous visualization of the PEGDMA matrix, cellulose particles, and individual cells in the matrix, demonstrating growth on cellulose particles during incubation. Together, these microbe-cellulose-PEGDMA hydrogels present a novel, reproducible experimental soil surrogate to connect single cells to process outcomes at the scale of soil aggregates and ecosystems.

2.
Chemosphere ; 342: 140192, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722534

RESUMO

Hydrogel encapsulation of ammonium oxidizing archaea (AOA) along with anammox bacteria holds potential to enable mainstream partial nitritation (PN)-anammox process attributing to AOA's high affinity to ammonia and oxygen. This study explored the growth of AOA and anammox in hydrogel-based synthetic biogranules by testing two AOA strains, three types of hydrogel beads and two substrate levels, to identify the optimal combination favoring the concomitant growth of AOA and anammox. The AOA Nitrososphaera viennensis (AOA-NV) exhibited higher abundance (10-2.3±0.6 AOA/16S) than the AOA-DW (10-4.7±0.8 AOA/16S) during the entire experimental period. Amongst the three types of hydrogel beads, the PVA-SA-BaCl2 (140 days) and PVA-SA-H3BO3 beads (>180 days) exhibited better long-term structural stability than the PEGDMA-SA-CaCl2 beads. The PVA-SA-H3BO3 beads exhibited the best long-term stability and both the PVA/SA BaCl2 and PVA-SA-H3BO3 beads had comparable ability to retain AOA, anammox and the overall microbial community. Substrate conditions rather than the bead type primarily controlled the microbial community structure. Modest substrate concentrations (1 mM NH4+-N in the feed and 0.8 mg/L dissolved oxygen (DO) in the reactor during aeration phase) followed by low substrate conditions (0.1 mM NH4+-N and 0.2 mg DO/L) both supported the growth of AOA and anammox, while the low substrate condition also suppressed the growth of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB), with AOA /AOB and anammox/NOB ratio of 0.7 and 0.4 at moderate substrate condition and 16.5 and 2.6 at low substrate condition.

3.
Water Res ; 242: 120303, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37419028

RESUMO

Application of partial nitritation (PN)-anammox to mainstream wastewater treatment faces challenges in low water temperature and low ammonium strength. In this study, a continuous flow PN-anammox reactor with hydrogel-encapsulated comammox and anammox was designed and operated for nitrogen removal from mainstream wastewater with low temperature. Long-term operation with synthetic and real wastewater as the feed demonstrated nearly complete ammonium and total inorganic nitrogen (TIN) removal by the reactor at temperatures as low as 10 °C. A significantly decreased nitrogen removal performance and biomass activity was observed in the reactor at 4 °C before a selective heating strategy was employed. A novel heating technology using radiation to heat carbon black co-encapsulated in the hydrogel matrix with biomass was used to selectively heat biomass but not water in the treatment system. This selective heating technology enabled nearly complete ammonium removal and 89.4 ± 4.3 % TIN removal at influent temperature of 4 °C and reactor temperature 5 °C. Activity tests suggested selective heating brought the biomass activity at influent temperatures of 4 °C and reactor temperature 5 °C to a level comparable to that at 10 °C. Comammox and anammox were consistently present in the system and spatially organized in the hydrogel beads as revealed by qPCR and fluorescence in-situ hybridization (FISH). The abundance of comammox largely decreased by 3 orders of magnitude during the operation at 4 °C, and rapidly recovered after the application of selective heating. The anammox-comammox technology tested in this study essentially enabled mainstream shortcut nitrogen removal, and the selective heating ensured good performance of the technology at temperature as low as 5 °C.


Assuntos
Compostos de Amônio , Águas Residuárias , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Desnitrificação , Hidrogéis , Nitrogênio , Oxirredução , Esgotos , Temperatura
4.
Mycologia ; 115(4): 470-483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37262388

RESUMO

Canopy soils occur on tree branches throughout the temperate rainforests of the Pacific Northwest Coast and are recognized as a defining characteristic of these ecosystems. Certain tree species extend adventitious roots into these canopy soil environments. Yet, research on adventitious root-associated fungi remains limited. Our study used microscopy to compare fungal colonization intensity between canopy and forest floor roots of old-growth bigleaf maple (Acer macrophyllum) trees. Subsequently, two high-throughput sequencing platforms were used to explore the spatial and seasonal variation of root-associated fungi between the two soil environments over one year. We found that canopy and forest floor roots had similar colonization intensity and were associating with a diversity of arbuscular mycorrhizal fungi and other potential symbionts, many of which were resolved to species level. Soil environment and seasonality affected root-associated fungal community composition, and several fungal species were indicative of the canopy soil environment. In Washington State's (USA) temperate old-growth rainforests, these canopy soil environments host a unique suite of root-associated fungi. The presence of arbuscular mycorrhizae provides further evidence that adventitious roots form fungal associations to exploit canopy soils for resources, and there may be novel relationships forming with other fungi. These soils may be providing a redundancy compartment (i.e., "nutrient reserve"), imparting a resiliency to disturbances for certain old-growth trees.


Assuntos
Acer , Micorrizas , Árvores/microbiologia , Ecossistema , Raízes de Plantas/microbiologia , Solo , Microbiologia do Solo , Fungos/genética
5.
Sci Total Environ ; 883: 163696, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37100124

RESUMO

In this study, a one-stage continuous-flow membrane-hydrogel reactor integrating both partial nitritation-anammox (PN-anammox) and anaerobic digestion (AD) was designed and operated for simultaneous autotrophic nitrogen (N) and anaerobic carbon (C) removal from mainstream municipal wastewater. In the reactor, a synthetic biofilm consisting of anammox biomass and pure culture ammonia oxidizing archaea (AOA) were coated onto and maintained on a counter-diffusion hollow fiber membrane to autotrophically remove nitrogen. Anaerobic digestion sludge was encapsulated in hydrogel beads and placed in the reactor to anaerobically remove COD. During the pilot operation at three operating temperature (25, 16 and 10 °C), the membrane-hydrogel reactor demonstrated stable anaerobic COD removal (76.2 ± 15.5 %) and membrane fouling was successfully suppressed allowing a relatively stable PN-anammox process. The reactor demonstrated good nitrogen removal efficiency, with an overall removal efficiency of 95.8 ± 5.0 % for NH4+-N and 78.9 ± 13.2 % for total inorganic nitrogen (TIN) during the entire pilot operation. Reducing the temperature to 10 °C caused a temporary reduction in nitrogen removal performance and abundances of AOA and anammox. However, the reactor and microbes demonstrated the ability to adapt to the low temperature spontaneously with recovered nitrogen removal performance and microbial abundances. Methanogens in hydrogel beads and AOA and anammox on the membrane were observed in the reactor by qPCR and 16S sequencing across all operational temperatures.


Assuntos
Compostos de Amônio , Águas Residuárias , Esgotos , Anaerobiose , Nitrogênio , Desnitrificação , Hidrogéis , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Oxirredução
6.
Sci Rep ; 12(1): 20822, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460678

RESUMO

Hydrogel-encapsulated catalysts are an attractive tool for low-cost intensification of (bio)-processes. Polyvinyl alcohol-sodium alginate hydrogels crosslinked with boric acid and post-cured with sulfate (PVA-SA-BS) have been applied in bioproduction and water treatment processes, but the low pH required for crosslinking may negatively affect biocatalyst functionality. Here, we investigate how crosslinking pH (3, 4, and 5) and time (1, 2, and 8 h) affect the physicochemical, elastic, and process properties of PVA-SA-BS beads. Overall, bead properties were most affected by crosslinking pH. Beads produced at pH 3 and 4 were smaller and contained larger internal cavities, while optical coherence tomography suggested polymer cross-linking density was higher. Optical coherence elastography revealed PVA-SA-BS beads produced at pH 3 and 4 were stiffer than pH 5 beads. Dextran Blue release showed that pH 3-produced beads enabled higher diffusion rates and were more porous. Last, over a 28-day incubation, pH 3 and 4 beads lost more microspheres (as cell proxies) than beads produced at pH 5, while the latter released more polymer material. Overall, this study provides a path forward to tailor PVA-SA-BS hydrogel bead properties towards a broad range of applications, such as chemical, enzymatic, and microbially catalyzed (bio)-processes.


Assuntos
Alginatos , Álcool de Polivinil , Hidrogéis , Polímeros , Concentração de Íons de Hidrogênio
7.
Front Microbiol ; 13: 1022899, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590435

RESUMO

Apparent contribution of complete ammonia-oxidizing organisms (comammox) to the global nitrogen cycle highlights the necessity for understanding niche differentiation of comammox bacteria among other ammonia oxidizers. While the high affinity for ammonia of the comammox species Nitrospira inopinata suggests their niche partitioning is expected to be centered in oligotrophic environments, their absence in nutrient-depleted environments (such as the oceans) suggests that other (abiotic) factors might control their distribution and spatial localization within microbial communities. Many ammonia- and nitrite-oxidizing organisms are sensitive to light; however, the photosensitivity of comammox has not been explored. Since comammox bacteria encode enzymatic machinery homologous to canonical ammonia-and nitrite-oxidizers, we hypothesized that comammox N. inopinata, the only available pure culture of this group of microorganisms, may be inhibited by illumination in a similar manner. We evaluated the impact of light intensity, wavelength, and duration on the degree of photoinhibition for cultures of the comammox species N. inopinata and the soil ammonia-oxidizing archaea Nitrososphaera viennensis. Both species were highly sensitive to light. Interestingly, mimicking diurnal light exposure caused an uncoupling of ammonia and nitrite oxidation in N. inopinata, indicating nitrite oxidation might be more sensitive to light exposure than ammonia oxidation. It is likely that light influences comammox spatial distribution in natural environments such as surface fresh waters according to diurnal cycles, light attenuation coefficients, and the light penetration depths. Our findings therefore provide ecophysiological insights for further studies on comammox both in field and laboratory settings.

8.
Biotechniques ; 68(2): 72-78, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31849245

RESUMO

The Oxford Nanopore Technologies MinION™ sequencer holds the capability to generate long amplicon reads; however, only a small amount of information is available regarding methodological approaches and the ability to identify a broad diversity of fungal taxa. To assess capabilities, three fungal mock communities were sequenced, each of which had varying ratios of 16 taxa. The data were processed through our selected pipeline. The MinION recovered all mock community members, when mixed at equal ratios. When a taxon was represented at a lower ratio, it was not recovered or decreased in relative abundance. Despite high error rates, highly accurate consensus sequences can be derived. This methodological approach identified all mock community taxa, demonstrating the MinION can be used as a practical alternative to profile fungal communities.


Assuntos
DNA Fúngico/análise , Fungos/isolamento & purificação , Micobioma , Sequenciamento por Nanoporos , Fungos/genética
9.
Toxins (Basel) ; 11(8)2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349594

RESUMO

Fusarium species coexist as toxigenic, systemic pathogens in sweet corn seed production in southwestern Idaho, USA. We hypothesized that fungal antagonists of seedborne Fusarium would differentially alter production of Fusarium mycotoxins directly and/or systemically. We challenged the Fusarium complex by in vitro antagonism trials and in situ silk and seed inoculations with fungal antagonists. Fungal antagonists reduced growth and sporulation of Fusarium species in vitro from 40.5% to as much as 100%. Pichia membranifaciens and Penicillium griseolum reduced fumonisin production by F. verticillioides by 73% and 49%, respectively, while P. membranifaciens and a novel Penicillium sp. (WPT) reduced fumonisins by F. proliferatum 56% and 78%, respectively. In situ, pre-planting inoculation of seeds with Penicillium WPT systemically increased fumonisins in the resulting crop. Morchella snyderi applied to silks of an F1 cross systemically reduced deoxynivalenol by 47% in mature seeds of the F2. Antagonists failed to suppress Fusarium in mature kernels following silk inoculations, although the ratio of F. verticillioides to total Fusarium double with some inoculants. Fusarium mycotoxin concentrations in sweet corn seed change systemically, as well as locally, in response to the presence of fungal antagonists, although in Fusarium presence in situ was not changed.


Assuntos
Fungos , Interações Microbianas , Micotoxinas/metabolismo , Sementes/microbiologia , Zea mays/microbiologia , Fungos/crescimento & desenvolvimento , Fungos/isolamento & purificação , Fungos/metabolismo
10.
Eukaryot Cell ; 3(3): 579-88, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15189980

RESUMO

Manganese peroxidase (MnP) is a major, extracellular component of the lignin-degrading system produced by the wood-rotting basidiomycetous fungus Phanerochaete chrysosporium. The transcription of MnP-encoding genes (mnps) in P. chrysosporium occurs as a secondary metabolic event, triggered by nutrient-nitrogen limitation. In addition, mnp expression occurs only under Mn2+ supplementation. Using a reporter system based on the enhanced green fluorescent protein gene (egfp), we have characterized the P. chrysosporium mnp1 promoter by examining the effects of deletion, replacement, and translocation mutations on mnp1 promoter-directed egfp expression. The 1,528-bp mnp1 promoter fragment drives egfp expression only under Mn2+-sufficient, nitrogen-limiting conditions, as required for endogenous MnP production. However, deletion of a 48-bp fragment, residing 521 bp upstream of the translation start codon in the mnp1 promoter, or replacement of this fragment with an unrelated sequence resulted in egfp expression under nitrogen limitation, both in the absence and presence of exogenous Mn2+. Translocation of the 48-bp fragment to a site 120 bp downstream of its original location resulted in Mn2+-dependent egfp expression under conditions similar to those observed with the wild-type mnp1 promoter. These results suggest that the 48-bp fragment contains at least one Mn2+-responsive cis element. Additional promoter-deletion experiments suggested that the Mn2+ element(s) is located within the 33-bp sequence at the 3' end of the 48-bp fragment. This is the first promoter sequence containing a Mn2+-responsive element(s) to be characterized in any eukaryotic organism.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Manganês/metabolismo , Peroxidases/genética , Phanerochaete/genética , Regiões Promotoras Genéticas/genética , Sequência de Bases , Clonagem Molecular , Indução Enzimática , Genes Fúngicos/genética , Proteínas de Fluorescência Verde , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Peroxidases/metabolismo , Phanerochaete/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...