Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 220(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37642942

RESUMO

Pervasive neuroinflammation occurs in many neurodegenerative diseases, including Alzheimer's disease (AD). SPI1/PU.1 is a transcription factor located at a genome-wide significant AD-risk locus and its reduced expression is associated with delayed onset of AD. We analyzed single-cell transcriptomic datasets from microglia of human AD patients and found an enrichment of PU.1-binding motifs in the differentially expressed genes. In hippocampal tissues from transgenic mice with neurodegeneration, we found vastly increased genomic PU.1 binding. We then screened for PU.1 inhibitors using a PU.1 reporter cell line and discovered A11, a molecule with anti-inflammatory efficacy and nanomolar potency. A11 regulated genes putatively by recruiting a repressive complex containing MECP2, HDAC1, SIN3A, and DNMT3A to PU.1 motifs, thus representing a novel mechanism and class of molecules. In mouse models of AD, A11 ameliorated neuroinflammation, loss of neuronal integrity, AD pathology, and improved cognitive performance. This study uncovers a novel class of anti-inflammatory molecules with therapeutic potential for neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Doenças Neuroinflamatórias , Animais , Camundongos , Humanos , Oncogenes , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Linhagem Celular , Modelos Animais de Doenças , Camundongos Transgênicos
2.
Nat Commun ; 10(1): 3515, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383866

RESUMO

Accurate DNA replication is essential for genomic stability and cancer prevention. Homologous recombination is important for high-fidelity DNA damage tolerance during replication. How the homologous recombination machinery is recruited to replication intermediates is unknown. Here, we provide evidence that a Rad51 paralog-containing complex, the budding yeast Shu complex, directly recognizes and enables tolerance of predominantly lagging strand abasic sites. We show that the Shu complex becomes chromatin associated when cells accumulate abasic sites during S phase. We also demonstrate that purified recombinant Shu complex recognizes an abasic analog on a double-flap substrate, which prevents AP endonuclease activity and endonuclease-induced double-strand break formation. Shu complex DNA binding mutants are sensitive to methyl methanesulfonate, are not chromatin enriched, and exhibit increased mutation rates. We propose a role for the Shu complex in recognizing abasic sites at replication intermediates, where it recruits the homologous recombination machinery to mediate strand specific damage tolerance.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Reparo de DNA por Recombinação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cromatina/genética , Cromatina/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA/genética , Fase S/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 44(17): 8199-215, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27298254

RESUMO

Here, we investigate the role of the budding yeast Shu complex in promoting homologous recombination (HR) upon replication fork damage. We recently found that the Shu complex stimulates Rad51 filament formation during HR through its physical interactions with Rad55-Rad57. Unlike other HR factors, Shu complex mutants are primarily sensitive to replicative stress caused by MMS and not to more direct DNA breaks. Here, we uncover a novel role for the Shu complex in the repair of specific MMS-induced DNA lesions and elucidate the interplay between HR and translesion DNA synthesis. We find that the Shu complex promotes high-fidelity bypass of MMS-induced alkylation damage, such as N3-methyladenine, as well as bypassing the abasic sites generated after Mag1 removes N3-methyladenine lesions. Furthermore, we find that the Shu complex responds to ssDNA breaks generated in cells lacking the abasic site endonucleases. At each lesion, the Shu complex promotes Rad51-dependent HR as the primary repair/tolerance mechanism over error-prone translesion DNA polymerases. Together, our work demonstrates that the Shu complex's promotion of Rad51 pre-synaptic filaments is critical for high-fidelity bypass of multiple replication-blocking lesion.


Assuntos
Reparo do DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenina/análogos & derivados , Adenina/metabolismo , Alquilação , Camptotecina/farmacologia , Cisplatino/farmacologia , Dano ao DNA/genética , DNA Polimerase beta/metabolismo , Reparo do DNA/efeitos dos fármacos , DNA Fúngico/biossíntese , Epistasia Genética/efeitos dos fármacos , Etoposídeo/farmacologia , Genes Fúngicos , Loci Gênicos , Recombinação Homóloga/genética , Humanos , Peróxido de Hidrogênio/farmacologia , Hidroxiureia/farmacologia , Metanossulfonato de Metila/farmacologia , Modelos Biológicos , Mutação/genética , Taxa de Mutação , Ligação Proteica/efeitos dos fármacos , Radiação Ionizante , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/genética , Raios Ultravioleta
4.
Biochem Cell Biol ; 94(5): 407-418, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27224545

RESUMO

In this review we focus on new insights that challenge our understanding of homologous recombination (HR) and Rad51 regulation. Recent advances using high-resolution microscopy and single molecule techniques have broadened our knowledge of Rad51 filament formation and strand invasion at double-strand break (DSB) sites and at replication forks, which are one of most physiologically relevant forms of HR from yeast to humans. Rad51 filament formation and strand invasion is regulated by many mediator proteins such as the Rad51 paralogues and the Shu complex, consisting of a Shu2/SWS1 family member and additional Rad51 paralogues. Importantly, a novel RAD51 paralogue was discovered in Caenorhabditis elegans, and its in vitro characterization has demonstrated a new function for the worm RAD51 paralogues during HR. Conservation of the human RAD51 paralogues function during HR and repair of replicative damage demonstrate how the RAD51 mediators play a critical role in human health and genomic integrity. Together, these new findings provide a framework for understanding RAD51 and its mediators in DNA repair during multiple cellular contexts.


Assuntos
Replicação do DNA , Recombinação Homóloga , Rad51 Recombinase/metabolismo , Animais , Humanos
5.
Yeast ; 33(5): 183-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26804060

RESUMO

Acute tryptophan depletion is used to induce low levels of serotonin in the brain. This method has been widely used in psychiatric studies to evaluate the effect of low levels of serotonin, and is generally considered a safe and reversible procedure. Here we use the budding yeast Saccharomyces cerevisiae to study the effects of tryptophan depletion on growth rate upon exposure to DNA-damaging agents. Surprisingly, we found that budding yeast undergoing tryptophan depletion were more sensitive to DNA-damaging agents such as methyl methanesulphonate (MMS) and hydroxyurea (HU). We found that this defect was independent of several DNA repair pathways, such as homologous recombination, base excision repair and translesion synthesis, and that this damage sensitivity was not due to impaired S-phase signalling. Upon further analysis, we found that the DNA-damage sensitivity of tryptophan depletion was likely due to impaired protein synthesis. These studies describe an important source of variance in budding yeast when using tryptophan as an auxotrophic marker, particularly on studies focusing on DNA repair, and suggest that further testing of the effect of tryptophan depletion on DNA repair in mammalian cells is warranted. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Divisão Celular/fisiologia , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/fisiologia , Triptofano/biossíntese , Dano ao DNA , Reparo do DNA/fisiologia , DNA Fúngico/genética , DNA Fúngico/metabolismo , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Triptofano/metabolismo
6.
Nat Commun ; 6: 7834, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26215801

RESUMO

The conserved budding yeast Rad51 paralogues, including Rad55, Rad57, Csm2 and Psy3 are indispensable for homologous recombination (HR)-mediated chromosome damage repair. Rad55 and Rad57 are associated in a heterodimer, while Csm2 and Psy3 form the Shu complex with Shu1 and Shu2. Here we show that Rad55 bridges an interaction between Csm2 with Rad51 and Rad52 and, using a fully reconstituted system, demonstrate that the Shu complex synergizes with Rad55-Rad57 and Rad52 to promote nucleation of Rad51 on single-stranded DNA pre-occupied by replication protein A (RPA). The csm2-F46A allele is unable to interact with Rad55, ablating the ability of the Shu complex to enhance Rad51 presynaptic filament assembly in vitro and impairing HR in vivo. Our results reveal that Rad55-Rad57, the Shu complex and Rad52 act as a functional ensemble to promote Rad51-filament assembly, which has important implications for understanding the role of the human RAD51 paralogues in Fanconi anaemia and cancer predisposition.


Assuntos
Adenosina Trifosfatases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Reparo de DNA por Recombinação , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Técnicas In Vitro , Microscopia Eletrônica , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe/metabolismo
7.
Genetics ; 199(4): 1023-33, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25659377

RESUMO

The Saccharomyces cerevisiae Shu2 protein is an important regulator of Rad51, which promotes homologous recombination (HR). Shu2 functions in the Shu complex with Shu1 and the Rad51 paralogs Csm2 and Psy3. Shu2 belongs to the SWS1 protein family, which is characterized by its SWIM domain (CXC...Xn...CXH), a zinc-binding motif. In humans, SWS1 interacts with the Rad51 paralog SWSAP1. Using genetic and evolutionary analyses, we examined the role of the Shu complex in mitotic and meiotic processes across eukaryotic lineages. We provide evidence that the SWS1 protein family contains orthologous genes in early-branching eukaryote lineages (e.g., Giardia lamblia), as well as in multicellular eukaryotes including Caenorhabditis elegans and Drosophila melanogaster. Using sequence analysis, we expanded the SWIM domain to include an invariant alanine three residues after the terminal CXH motif (CXC…Xn…CXHXXA). We found that the SWIM domain is conserved in all eukaryotic orthologs, and accordingly, in vivo disruption of the invariant residues within the canonical SWIM domain inhibits DNA damage tolerance in yeast and protein-protein interactions in yeast and humans. Furthermore, using evolutionary analyses, we found that yeast and Drosophila Shu2 exhibit strong coevolutionary signatures with meiotic proteins, and in yeast, its disruption leads to decreased meiotic progeny. Together our data indicate that the SWS1 family is an ancient and highly conserved eukaryotic regulator of meiotic and mitotic HR.


Assuntos
Proteínas de Ciclo Celular/genética , Sequência Conservada , Evolução Molecular , Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/genética , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/metabolismo , Humanos , Dados de Sequência Molecular , Família Multigênica , Estrutura Terciária de Proteína , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...