Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cytokine ; 130: 155082, 2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32259773

RESUMO

Cervical cancer (CeCa) produces large amounts of IL-10, which downregulates the major histocompatibility complex class I molecules (HLA-I) in cancer cells and inhibits the immune response mediated by cytotoxic T lymphocytes (CTLs). In this study, we analyzed the ability of CeCa cells to produce IL-10 through the CD73-adenosine pathway and its effect on the downregulation of HLA-I molecules to evade CTL-mediated immune recognition. CeCa cells cultured in the presence of ≥10 µM AMP or adenosine produced 4.5-6 times as much IL-10 as unstimulated cells. The silencing of CD73 or the blocking of A2BR with the specific antagonist MRS1754 reversed this effect. In addition, IL-10 decreased the expression of HLA-I molecules, resulting in the protection of CeCa cells against the cytotoxic activity of CTLs. The addition of MRS1754 or anti-IL-10 reversed the decrease in HLA-I molecules and favored the cytotoxic activity of CTLs. These results strongly suggest the presence of a feedback loop encompassing the adenosinergic pathway, the production of IL-10, and the downregulation of HLA-I molecules in CeCa cells that favors immune evasion and thus tumor progression. This pathway may have clinical importance as a therapeutic target.

3.
Mediators Inflamm ; 2020: 1678780, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488292

RESUMO

Persistent infection with high-risk human papillomavirus (HR-HPV) is the main factor in the development of cervical cancer (CC). The presence of immunosuppressive factors plays an important role in the development of this type of cancer. To determine whether CD39 and CD73, which participate in the production of immunosuppressive adenosine (Ado), are involved in the progression of CC, we compared the concentrations and hydrolytic activity of these ectonucleotidases in platelet-free plasma (PFP) samples between patients with low-grade squamous intraepithelial lesions (LSILs) (n = 18), high-grade squamous intraepithelial lesions (HSILs) (n = 12), and CC (n = 19) and normal donors (NDs) (n = 15). The concentrations of CD39 and CD73 in PFP increased with disease progression (r = 0.5929, p < 0.001). The PFP of patients with HSILs or CC showed the highest concentrations of CD39 (2.3 and 2.2 times that of the NDs, respectively) and CD73 (1.7 and 2.68 times that of the NDs, respectively), which were associated with a high capacity to generate Ado from the hydrolysis of adenosine diphosphate (ADP) and adenosine monophosphate (AMP). The addition of POM-1 and APCP, specific inhibitors of CD39 and CD73, respectively, inhibited the ADPase and AMPase activity of PFP by more than 90%. A high level of the 90 kD isoform of CD73 was detected in the PFP of patients with HSILs or CC. Digestion with endoglycosidase H and N-glycanase generated CD73 with weights of approximately 90 kD, 85 kD, 80 kD, and 70 kD. In addition, the levels of transforming grow factor-ß (TGF-ß) in the PFPs of patients with LSIL, HSIL and CC positively correlated with those of CD39 (r = 0.4432, p < 0.001) and CD73 (r = 0.5786, p < 0.001). These results suggest that persistent infection by HR-HPV and the concomitant production of TGF-ß promote the expression of CD39 and CD73 to favor CC progression through Ado generation.


Assuntos
5'-Nucleotidase/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Neoplasias do Colo do Útero/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Adulto , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos
4.
Mediators Inflamm ; 2019: 4651627, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31205451

RESUMO

The development of cervical cancer (CeCa) is associated with high-risk human papilloma virus (HR-HPV) infections, mainly HPV-16, which is present in more than 50% of cases. The presence of immunosuppressive factors in the early stages of the disease is also strongly linked to CeCa progression. In this context, it is unknown whether ectonucleotidases CD39 and CD73, which are involved in the production of adenosine (Ado) that suppresses the specific antitumor immune response, are present in precursor lesions of CeCa. In this pilot study, we analyzed the presence of CD39 and CD73 and their capacity to generate Ado in 25 cervical samples from patients with grade 1 cervical intraepithelial neoplasms (CIN-1) and 25 samples from normal donors (NDs) free of HPV infection. Cells obtained from cervical samples of CIN-1 patients positive for HPV-16 showed higher CD39 and CD73 contents compared to samples obtained from CIN-1 patients negative for HPV-16 and NDs. Interestingly, solubilized cervical mucus from these patients also showed higher contents of soluble CD39 and CD73, which were associated with a greater capacity to produce Ado from the hydrolysis of adenosine triphosphate (ATP) and adenosine monophosphate (AMP). In addition, serum samples of these patients showed higher levels of TGF-ß than those of CIN-1 patients negative for HPV-16 and ND. These results suggest that persistent infection with HR-HPV, mostly HPV-16, in CIN-1 patients may promote the expression of CD39 and CD73 through the production of TGF-ß in precursor lesions to generate an immunosuppressive microenvironment and allow its progression to CeCa.


Assuntos
5'-Nucleotidase/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Infecções por Papillomavirus/enzimologia , Infecções por Papillomavirus/metabolismo , Displasia do Colo do Útero/metabolismo , Displasia do Colo do Útero/virologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adolescente , Adulto , Estudos Transversais , Feminino , Papillomavirus Humano 16/patogenicidade , Humanos , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem
5.
Genome Biol ; 16: 277, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26653294

RESUMO

BACKGROUND: Patterns of genetic and genomic variance are informative in inferring population history for human, model species and endangered populations. RESULTS: Here the genome sequence of wild-born African cheetahs reveals extreme genomic depletion in SNV incidence, SNV density, SNVs of coding genes, MHC class I and II genes, and mitochondrial DNA SNVs. Cheetah genomes are on average 95 % homozygous compared to the genomes of the outbred domestic cat (24.08 % homozygous), Virunga Mountain Gorilla (78.12 %), inbred Abyssinian cat (62.63 %), Tasmanian devil, domestic dog and other mammalian species. Demographic estimators impute two ancestral population bottlenecks: one >100,000 years ago coincident with cheetah migrations out of the Americas and into Eurasia and Africa, and a second 11,084-12,589 years ago in Africa coincident with late Pleistocene large mammal extinctions. MHC class I gene loss and dramatic reduction in functional diversity of MHC genes would explain why cheetahs ablate skin graft rejection among unrelated individuals. Significant excess of non-synonymous mutations in AKAP4 (p<0.02), a gene mediating spermatozoon development, indicates cheetah fixation of five function-damaging amino acid variants distinct from AKAP4 homologues of other Felidae or mammals; AKAP4 dysfunction may cause the cheetah's extremely high (>80 %) pleiomorphic sperm. CONCLUSIONS: The study provides an unprecedented genomic perspective for the rare cheetah, with potential relevance to the species' natural history, physiological adaptations and unique reproductive disposition.


Assuntos
Acinonyx/genética , Genoma , Animais , Gatos , Cães , Variação Genética , Genômica , Masculino , Família Multigênica
6.
PLoS One ; 9(12): e114631, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25503521

RESUMO

The major histocompatibility complex (MHC) is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III) containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians) are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus) and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2-6 times longer) than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity) with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs.


Assuntos
Jacarés e Crocodilos/genética , Genes MHC da Classe II/genética , Genes MHC Classe I/genética , Genômica , Jacarés e Crocodilos/virologia , Animais , Cromossomos Artificiais Bacterianos/genética , Mapeamento de Sequências Contíguas , Retroelementos/genética , Retroviridae/genética , Especificidade da Espécie
7.
BMC Biol ; 8: 29, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20359332

RESUMO

BACKGROUND: Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. RESULTS: The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. CONCLUSION: The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the history of the MHC in birds, and highlight striking differences in MHC structure and organization among avian lineages.


Assuntos
Fragmentação do DNA , Tentilhões/genética , Duplicação Gênica , Genoma/genética , Complexo Principal de Histocompatibilidade/genética , Animais , Sequência de Bases , Southern Blotting , Cromossomos Artificiais Bacterianos , Genômica , Hibridização in Situ Fluorescente , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...