Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(3): 2521-2529, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36609751

RESUMO

BACKGROUND: Chemerin is a chemoattractant protein with adipokine and antimicrobial properties encoded by the retinoic acid receptor responder 2 (RARRES2) gene. Chemerin bioactivity largely depends on carboxyl-terminal proteolytic processing that generates chemerin isoforms with different chemotactic, regulatory, and antimicrobial potentials. While these mechanisms are relatively well known, the role of alternative splicing in generating isoform diversity remains obscure. METHODS AND RESULTS: Using rapid amplification of cDNA ends (RACE) PCR, we determined RARRES2 transcript variants present in mouse and human tissues and identified novel transcript variant 4 of mouse Rarres2 encoding mChem153K. Moreover, analyses of real-time quantitative PCR (RT-qPCR) and publicly-available next-generation RNA sequencing (RNA-seq) datasets showed that different alternatively spliced variants of mouse Rarres2 are present in mouse tissues and their expression patterns were unaffected by inflammatory and infectious stimuli except brown adipose tissue. However, only one transcript variant of human RARRES2 was present in liver and adipose tissue. CONCLUSION: Our findings indicate a limited role for alternative splicing in generating chemerin isoform diversity under all tested conditions.


Assuntos
Processamento Alternativo , Quimiocinas , Humanos , Animais , Camundongos , Quimiocinas/genética , Quimiocinas/metabolismo , Processamento Alternativo/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Adipocinas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
Front Immunol ; 13: 949033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052074

RESUMO

Host-microbiota interactions are bidirectional. On one hand, ecological pressures exerted by the host shape the composition and function of the microbiota. On the other, resident microbes trigger multiple pathways that influence the immunity of the host. Bile acids participate in both parts of this interplay. As host-derived compounds, they display bacteriostatic properties and affect the survival and growth of the members of the microbial community. As microbiota-modified metabolites, they further influence the microbiota composition and, in parallel, modulate the immunity of the host. Here, we provide a comprehensive overview of the mechanisms behind this unique dialogue and discuss how we can harness bile acids to treat intestinal inflammation.


Assuntos
Microbioma Gastrointestinal , Microbiota , Ácidos e Sais Biliares
3.
Curr Issues Mol Biol ; 44(3): 1169-1181, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35723299

RESUMO

Antimicrobial peptides (AMPs) are important components of innate immunity. Here, we report the antimicrobial properties of a peptide derived from the Male fertility factor kl2 (MFF-kl2) protein of Drosophila melanogaster, which was identified as a functional analog of the mammalian antibacterial chemerin-p4 peptide. The antimicrobial activity of multifunctional chemerin is mainly associated with a domain localized in the middle of the chemerin sequence, Val66-Pro85 peptide (chemerin-p4). Using bioinformatic tools, we found homologs of the chemerin-p4 peptide in the proteome of D. melanogaster. One of them is MFF-p1, which is a part of the MFF kl2 protein, encoded by the gene male fertility factor kl2 (kl-2) located on the long arm of the Y chromosome. The second detected peptide (Z-p1) is a part of the Zizimin protein belonging to DOCK family, which is involved in cellular signaling processes. After testing the antimicrobial properties of both peptides, we found that only MFF-p1 possesses these properties. Here, we demonstrate its antimicrobial potential both in vitro and in vivo after infecting D. melanogaster with bacteria. MFF-p1 strongly inhibits the viable counts of E. coli and B. subtilis after 2 h of treatment and disrupts bacterial cells. The expression of kl-2 is regulated by exposure to bacteria and by the circadian clock.

4.
Front Microbiol ; 12: 742610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803962

RESUMO

Chemerin-derived peptide Val66-Pro85 (p4) restricts the growth of a variety of skin-associated bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). To better understand the antimicrobial potential of chemerin peptide, we compared p4 activity against MRSA in vitro to cathelicidin LL-37, one of the key endogenous peptides implicated in controlling the growth of S. aureus. The efficacy of p4 was also validated in relevant experimental models of skin pathology, such as topical skin infection with community-acquired MRSA, and in the context of skin inflammatory diseases commonly associated with colonization with S. aureus, such as atopic dermatitis (AD). We showed that p4 collaborates additively with LL-37 in inhibiting the growth of S. aureus, including MRSA, and that p4 was effective in vivo in reducing MRSA burden. p4 was also effective in reducing levels of skin-infiltrating leukocytes in S. aureus-infected AD-like skin. Taken together, our data suggest that p4 is effective in limiting S. aureus and, in particular, MRSA skin infection.

5.
Antioxidants (Basel) ; 10(3)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805777

RESUMO

Epithelia in the skin, gut and other environmentally exposed organs display a variety of mechanisms to control microbial communities and limit potential pathogenic microbial invasion. Naturally occurring antimicrobial proteins/peptides and their synthetic derivatives (here collectively referred to as AMPs) reinforce the antimicrobial barrier function of epithelial cells. Understanding how these AMPs are functionally regulated may be important for new therapeutic approaches to combat microbial infections. Some AMPs are subject to redox-dependent regulation. This review aims to: (i) explore cysteine-based redox active AMPs in skin and intestine; (ii) discuss casual links between various redox environments of these barrier tissues and the ability of AMPs to control cutaneous and intestinal microbes; (iii) highlight how bacteria, through intrinsic mechanisms, can influence the bactericidal potential of redox-sensitive AMPs.

6.
Front Microbiol ; 11: 1819, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849424

RESUMO

Chronic inflammatory skin diseases like psoriasis alter the local skin microbiome and lead to complications such as persistent infection with opportunistic/pathogenic bacteria. Disease-associated changes in microbiota may be due to downregulation of epidermal antimicrobial proteins/peptides, such as antimicrobial protein chemerin. Here, we show that chemerin and its bioactive derivatives have differential effects on the viability of different genera of cutaneous bacteria. The lethal effects of chemerin are enhanced by bacterial-derived ROS-induced chemerin peptide oxidation and suppressed by stationary phase sigma factor RpoS. Insight into the mechanisms underlying changes in the composition of cutaneous bacteria during autoreactive skin disease may provide novel ways to mobilize chemerin and its peptide derivatives for maximum antimicrobial efficacy.

7.
Curr Microbiol ; 77(11): 3201-3212, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32813091

RESUMO

Next-generation sequencing (NGS) technologies together with an improved access to compute performance led to a cost-effective genome sequencing over the past several years. This allowed researchers to fully unleash the potential of genomic and metagenomic analyses to better elucidate two-way interactions between host cells and microbiome, both in steady-state and in pathological conditions. Experimental research involving metagenomics shows that skin resident microbes can influence the cutaneous pathophysiology. Here, we review metagenome approaches to study microbiota at this barrier site. We also describe the consequences of changes in the skin microbiota burden and composition, mostly revealed by these technologies, in the development of common inflammatory skin diseases.


Assuntos
Microbiota , Dermatopatias , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenoma , Metagenômica , Microbiota/genética
8.
Postepy Biochem ; 66(2): 151-159, 2020 06 27.
Artigo em Polonês | MEDLINE | ID: mdl-32700509

RESUMO

The epithelial tissues have continuous contact with external environment, including pathogenic microorganisms. Endogenous antimicrobial proteins and peptides produced by epithelial cells play a key role in controlling microbial burden and composition, either directly, or by engaging immune cells. These include active derivatives of multifunctional protein chemerin, which is equipped with both antimicrobial and chemotactic function. Given an increasing number of infections caused by antibiotic-insensitive microorganisms, such as methicillin- resistant S. aureus (MRSA), it is important to fully understand how these epithelia-associated microorganisms are controlled at barrier sites, including skin and oral cavity. Chemerin-derived synthetic peptide 4 (p4) covering central Val66-Pro85 chemerin sequence exhibits broad range of antimicrobial activity against skin- and oral cavity- associated bacteria, including MRSA strains, suggesting its therapeutic potential for bacteria-mediated barrier organs pathologies. In this article we present the overview of protective functions of chemerin and chemerin-derived peptides in the epithelial tissues.


Assuntos
Antibacterianos/metabolismo , Bactérias/metabolismo , Quimiocinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Farmacorresistência Bacteriana , Células Epiteliais/citologia , Humanos , Staphylococcus aureus Resistente à Meticilina/metabolismo
9.
Cytokine Growth Factor Rev ; 49: 70-84, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31473081

RESUMO

The skin is the largest and the most exposed organ in the body and its defense is regulated at several anatomical levels. Here, we explore how skin layers, including the epidermis, dermis, adipose tissue, and skin appendages, as well as cutaneous microbiota, contribute to the function of skin antimicrobial defense. We highlight recent studies that reveal the differential and complementary responses of skin layers to bacterial, viral, and fungal infection. In particular, we focus on key soluble mediators in the layered skin defense, such as antimicrobial peptides, as well as on lipid antimicrobials, cytokines, chemokines, and barrier-maintaining molecules. We include our own evaluative analyses of transcriptomic datasets of human skin to map the involvement of antimicrobial peptides in skin protection under both steady state and infectious conditions. Furthermore, we explore the versatility of the mechanisms underlying skin defense by highlighting the role of the immune and nervous systems in their interaction with cutaneous microbes, and by illustrating the multifunctionality of selected antimicrobial peptides in skin protection.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Queratinócitos/imunologia , Pele/imunologia , Anti-Infecciosos , Quimiocinas/imunologia , Citocinas/imunologia , Perfilação da Expressão Gênica , Humanos , Queratinócitos/microbiologia , Microbiota , Pele/microbiologia
10.
J Biol Chem ; 294(4): 1267-1278, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30504221

RESUMO

Chemerin is a leukocyte attractant, adipokine, and antimicrobial protein abundantly produced in the skin epidermis. Despite the fact that most of the bactericidal activity present in human skin exudates is chemerin-dependent, just how chemerin shapes skin defenses remains obscure. Here we demonstrate that p4, a potent antimicrobial human chemerin peptide derivative, displays killing activity against pathogenic methicillin-resistant Staphylococcus aureus strains and suppresses microbial growth in a topical skin infection model. Mechanistically, we show that p4 homodimerization is required for maximal bactericidal activity and that an oxidative environment, such as at the skin surface, facilitates p4 disulfide bridge formation, required for the dimerization. p4 led to rapid damage of the bacterial internal membrane and inhibited the interaction between the membranous cytochrome bc1 complex and its redox partner, cytochrome c These results suggest that a chemerin p4-based defense strategy combats bacterial challenges at the skin surface.


Assuntos
Antibacterianos/farmacologia , Quimiocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oligopeptídeos/farmacologia , Dermatopatias Bacterianas/tratamento farmacológico , Pele/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Pele/metabolismo , Pele/microbiologia , Dermatopatias Bacterianas/metabolismo , Dermatopatias Bacterianas/microbiologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia
11.
Front Immunol ; 8: 353, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28424689

RESUMO

Periodontal inflammation is one of the most common chronic inflammatory conditions in humans. Despite recent advances in identifying and characterizing oral microbiota dysbiosis in the pathogenesis of gum disease, just how host factors maintain a healthy homeostatic oral microbial community or prevent the development of a pathogenic oral microbiota remains poorly understood. An important determinant of microbiota fate is local antimicrobial proteins. Here, we report that chemoattractant protein chemerin, which we recently identified as a potent endogenous antimicrobial agent in body barriers such as the skin, is present in the oral cavity under homeostatic and inflammatory conditions. Chemerin and a chemerin-derived antimicrobial peptide are bactericidal against select bacteria strategically positioned in dental biofilm. Gingival crevicular samples from patients with gingivitis but not periodontitis contain abundant bioactive chemerin capable of inducing CMKLR1-dependent leukocyte migration. Gingipains secreted by the periodontopathogen P. gingivalis inactivate chemerin. Together, these data suggest that as an antimicrobial agent and leukocyte chemoattractant, chemerin likely contributes to antimicrobial immune defense in the oral cavity.

12.
Gut Pathog ; 7: 18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26185527

RESUMO

BACKGROUND: The O48 group comprises Salmonella bacteria containing sialic acid in the lipopolysaccharide (LPS). Bacteria with sialylated surface structures are described as pathogens that avoid immunological response of the host by making similar their surface antigens to the host's tissues (molecular mimicry). It is known that the smooth-type LPS of Salmonella enterica and outer membrane proteins (OMP) PgtE, PagC and Rck mediate serum resistant phenotype by affecting complement system (C). The aim of this study was to investigate C3 component activation by Salmonella O48 LPS and OMP. FINDINGS: In the present study, we examined C3 component deposition on the three Salmonella O48 strains: S. enterica subspecies enterica serovar Ngozi, S. enterica subsp. enterica sv. Isaszeg, and S. enterica subsp. arizonae containing sialic acid in the O-specific part of LPS. The greatest C3 deposition occurred on Salmonella sv. Isaszeg cells (p < 0.005) as well as on their LPS (low content of sialic acid in LPS) (p < 0.05) after 45 min of incubation in 50% human serum. Weaker C3 deposition ratio on the Salmonella sv. Ngozi (high content of sialic acid in LPS) and Salmonella subsp. arizonae (high content of sialic acid in LPS) cells correlated with the lower C3 activation on their LPS. Immunoblotting revealed that OMP isolated from the tested strains also bound C3 protein fragments. CONCLUSIONS: We suggest that activation of C3 serum protein is dependent on the sialic acid contents in the LPS as well as on the presence of OMP in the range of molecular masses of 35-48 kDa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...