Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38667702

RESUMO

Poly(ether ether ketone) (PEEK) was found to form gels in the benign solvent 1,3-diphenylacetone (DPA). Gelation of PEEK in DPA was found to form an interconnected, strut-like morphology composed of polymer axialites. To our knowledge, this is the first report of a strut-like morphology for PEEK aerogels. PEEK/DPA gels were prepared by first dissolving PEEK in DPA at 320 °C. Upon cooling to 50 °C, PEEK crystallizes and forms a gel in DPA. The PEEK/DPA phase diagram indicated that phase separation occurs by solid-liquid phase separation, implying that DPA is a good solvent for PEEK. The Flory-Huggins interaction parameter, calculated as χ12 = 0.093 for the PEEK/DPA system, confirmed that DPA is a good solvent for PEEK. PEEK aerogels were prepared by solvent exchanging DPA to water then freeze-drying. PEEK aerogels were found to have densities between 0.09 and 0.25 g/cm3, porosities between 80 and 93%, and surface areas between 200 and 225 m2/g, depending on the initial gel concentration. Using nitrogen adsorption analyses, PEEK aerogels were found to be mesoporous adsorbents, with mesopore sizes of about 8 nm, which formed between stacks of platelike crystalline lamellae. Scanning electron microscopy and X-ray scattering were utilized to elucidate the hierarchical structure of the PEEK aerogels. Morphological analysis found that the PEEK/DPA gels were composed of a highly nucleated network of PEEK axialites (i.e., aggregates of stacked crystalline lamellae). The highly connected axialite network imparted robust mechanical properties on PEEK aerogels, which were found to densify less upon freeze-drying than globular PEEK aerogel counterparts gelled from dichloroacetic acid (DCA) or 4-chlorphenol (4CP). PEEK aerogels formed from DPA were also found to have a modulus-density scaling that was far more efficient in supporting loads than the poorly connected aerogels formed from PEEK/DCA or PEEK/4CP solutions. The strut-like morphology in these new PEEK aerogels also significantly improved the modulus to a degree that is comparable to high-performance crosslinked aerogels based on polyimide and polyurea of comparable densities.

2.
Adv Mater ; : e2307881, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009658

RESUMO

Additive manufacturing (AM) of aerogels increases the achievable geometric complexity, and affords fabrication of hierarchically porous structures. In this work, a custom heated material extrusion (MEX) device prints aerogels of poly(phenylene sulfide) (PPS), an engineering thermoplastic, via in situ thermally induced phase separation (TIPS). First, pre-prepared solid gel inks are dissolved at high temperatures in the heated extruder barrel to form a homogeneous polymer solution. Solutions are then extruded onto a room-temperature substrate, where printed roads maintain their bead shape and rapidly solidify via TIPS, thus enabling layer-wise MEX AM. Printed gels are converted to aerogels via postprocessing solvent exchange and freeze-drying. This work explores the effect of ink composition on printed aerogel morphology and thermomechanical properties. Scanning electron microscopy micrographs reveal complex hierarchical microstructures that are compositionally dependent. Printed aerogels demonstrate tailorable porosities (50.0-74.8%) and densities (0.345-0.684 g cm-3 ), which align well with cast aerogel analogs. Differential scanning calorimetry thermograms indicate printed aerogels are highly crystalline (≈43%), suggesting that printing does not inhibit the solidification process occurring during TIPS (polymer crystallization). Uniaxial compression testing reveals that compositionally dependent microstructure governs aerogel mechanical behavior, with compressive moduli ranging from 33.0 to 106.5 MPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...