Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Encephale ; 42(4): 367-73, 2016 Aug.
Artigo em Francês | MEDLINE | ID: mdl-27161263

RESUMO

BACKGROUND: Psychiatric disorders are consistent with the gene x environment model, and non-specific environmental factors such as childhood trauma, urbanity, and migration have been implicated. All of these factors have in common to dysregulate the biological pathways involved in response to stress. Stress is a well-known precipitating factor implicated in psychiatric disorders such as depression, bipolar disorder, anxiety, and possibly schizophrenia. More precisely, psychosocial stress induces dysregulation of the hypothalamic-pituitary-adrenal axis (HPA) and could modify neurotransmission, which raises the question of the involvement of stress-related biological changes in psychotic disorders. Indeed, the literature reveals dysregulation of the HPA axis in schizophrenia. This dysregulation seems to be present in the prodromal phases (UHR subjects for ultra-high risk) and early schizophrenia (FEP for first episode psychosis). Thus, and following the stress-vulnerability model, stress could act directly on psychotic onset and precipitate the transition of vulnerable subjects to a full-blown psychosis. OBJECTIVE: The present paper reviews the literature on stress and onset of schizophrenia, with consideration for the causal role vs. associated role of HPA axis dysregulation in schizophrenia and the factors that influence it, in particular during prodromal and earlier phases. We also discuss different methods developed to measure stress in humans. METHODOLOGY: We performed a bibliographic search using the keywords 'cortisol', 'glucocorticoid', 'HPA' with 'UHR', 'CHR', 'at-risk mental state', 'first episode psychosis', 'schizotypal', 'prodromal schizophrenia' in Medline, Web of Knowledge (WOS), and EBSCO completed by a screening of the references of the selected articles. RESULTS: Stress has been studied for many years in schizophrenia, either by subjective methods (questionnaires), or objective methods (standardized experimental protocols) with biological sampling and/or brain imaging methods. These methods have suggested a link between dysregulation of the HPA axis and psychotic symptoms both through abnormal basal levels of cortisol and flattened reactivity to social stress. Imaging results suggest indirect modifications, including abnormal pituitary or hippocampal volume. Several factors dysregulating the HPA axis have also been highlighted, such as consumption of drugs (i.e. cannabis), childhood trauma or genetic factors (such as COMT, or MTHFR variants). Psychological stress induces subcortical dopaminergic activation attributable to hypothalamic-pituitary-adrenal (HPA) axis dysregulation. This dysregulation is present in the prodromal phase (UHR) in patients who have experienced a first psychotic episode (FEP) and in siblings of schizophrenic patients. Stress dysregulation is a plausible hypothesis to understand the psychosis onset. DISCUSSION: The effect of stress on brain pathways could participate to the mechanisms underlying the onset of psychotic symptoms, both as a precipitating factor and as a marker of a predisposing vulnerability. This dysregulation fits into the gene x environment model: in subjects with genetic predispositions, stressful environmental factors can modify biological pathways implicated in psychiatric disorders, promoting the emergence of symptoms. However, many confounding factors obscure the literature, and further studies are needed in schizophrenic patients, UHR and FEP patients to clarify the precise role of stress in psychotic transition. Identification of stress biomarkers could help diagnosis and prognosis, and pave the way for specific care strategies based on stress-targeted therapies.


Assuntos
Transtornos Psicóticos/fisiopatologia , Transtornos Psicóticos/psicologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Humanos , Hidrocortisona/metabolismo , Hidrocortisona/fisiologia , Sistema Hipotálamo-Hipofisário/fisiopatologia , Sistema Hipófise-Suprarrenal/fisiopatologia , Transtornos Psicóticos/etiologia , Esquizofrenia/metabolismo , Estresse Psicológico/complicações
2.
Mol Psychiatry ; 20(11): 1420-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25560759

RESUMO

Antidepressant drugs are commonly prescribed treatments for anxiety disorders, and there is growing interest in understanding how these drugs impact fear extinction because extinction learning is pivotal to successful exposure-based therapy (EBT). A key objective within this domain is understanding how antidepressants alter the activation of specific elements of the limbic-based network that governs such fear processing. Chronic treatment with the antidepressant tianeptine has been shown to reduce the acquisition of extinction learning in rats, yet the drug's acute influence on activation in prefrontal and amygdalar regions, and on extinction learning are not well understood. To assess its influence on cellular activation, rats were injected with tianeptine and Fos immunoreactivity was measured in these regions. Acute tianeptine treatment selectively altered Fos expression within subdivisions of the central nucleus of the amygdala (CEA) in a bidirectional manner that varied in relation to ongoing activation within the capsular subdivision and its prefrontal and intra-amygdalar inputs. This pattern of results suggests that the drug can conditionally modulate the activation of CEA subdivisions, which contain microcircuits strongly implicated in fear processing. The effect of acute tianeptine was also examined with respect to the acquisition, consolidation and expression of fear extinction in rats. Acute tianeptine attenuated extinction learning as well as the recall of extinction memory, which underscores that acute dosing with the drug could alter learning during EBT. Together these findings provide a new perspective for understanding the mechanism supporting tianeptine's clinical efficacy, as well as its potential influence on CEA-based learning mechanisms.


Assuntos
Antidepressivos Tricíclicos/farmacologia , Núcleo Central da Amígdala/citologia , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Tiazepinas/farmacologia , Estimulação Acústica/efeitos adversos , Análise de Variância , Animais , Núcleo Central da Amígdala/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
3.
Learn Mem ; 7(5): 353-6, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11040267

RESUMO

On six days rats were exposed to each of two contexts. They received an electric shock in one context and nothing in the other. Rats were tested later in each environment without shock. The rats froze and defecated more often in the shock-paired environment; they also exhibited a significantly larger elevation in rectal temperature in that environment. The rats discriminated between each context, and we suggest that the elevation in temperature is the consequence of associative learning. Thus, body temperature can be used as a conditional response measure in Pavlovian fear conditioning experiments that use footshock as the unconditional stimulus.


Assuntos
Temperatura Corporal , Condicionamento Clássico/fisiologia , Medo/fisiologia , Animais , Comportamento Animal/fisiologia , Defecação , Discriminação Psicológica , Eletrochoque , Meio Ambiente , Membro Posterior , Masculino , Ratos , Ratos Long-Evans , Reto/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...