Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-26863657

RESUMO

We used precise point positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled [Formula: see text] ions operated at the National Physical Laboratory (NPL), U.K. and the Physikalisch-Technische Bundesanstalt (PTB), Germany. At both institutes, an active hydrogen maser serves as a flywheel oscillator which is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the (2)S1/2(F=0)-(2)D3/2(F=2) electric quadrupole transition in [Formula: see text] via an optical femtosecond frequency comb. To profit from long coherent GPS-link measurements, we extrapolate the fractional frequency difference over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS-link instability. We determined the total statistical uncertainty consisting of the GPS-link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using the extrapolation scheme with the smallest combined uncertainty, we find a fractional frequency difference [Formula: see text] of -1.3×10(-15) with a combined uncertainty of 1.2×10(-15) for a total measurement time of 67 h. This result is consistent with an agreement of the frequencies realized by both optical clocks and with recent absolute frequency measurements against caesium fountain clocks within the corresponding uncertainties.

2.
Phys Rev Lett ; 113(21): 210801, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25479482

RESUMO

Singly ionized ytterbium, with ultranarrow optical clock transitions at 467 and 436 nm, is a convenient system for the realization of optical atomic clocks and tests of present-day variation of fundamental constants. We present the first direct measurement of the frequency ratio of these two clock transitions, without reference to a cesium primary standard, and using the same single ion of 171Yb+. The absolute frequencies of both transitions are also presented, each with a relative standard uncertainty of 6×10(-16). Combining our results with those from other experiments, we report a threefold improvement in the constraint on the time variation of the proton-to-electron mass ratio, µ/µ=0.2(1.1)×10(-16) yr(-1), along with an improved constraint on time variation of the fine structure constant, α/α=-0.7(2.1)×10(-17) yr(-1).

3.
Phys Rev Lett ; 90(5): 054101, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12633358

RESUMO

We experimentally and numerically investigate the quantum accelerator mode dynamics of an atom optical realization of the quantum delta-kicked accelerator, whose classical dynamics are chaotic. Using a Ramsey-type experiment, we observe interference, demonstrating that quantum accelerator modes are formed coherently. We construct a link between the behavior of the evolution's fidelity and the phase space structure of a recently proposed pseudoclassical map, and thus account for the observed interference visibilities.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(5 Pt 2): 056233, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11736080

RESUMO

We describe measurements of the mean energy of an ensemble of laser-cooled atoms in an atom optical system in which the cold atoms, falling freely under gravity, receive approximate delta-kicks from a pulsed standing wave of laser light. We call this system a "delta-kicked accelerator." Additionally, we can counteract the effect of gravity by appropriate shifting of the position of the standing wave, which restores the dynamics of the standard delta-kicked rotor. The presence of gravity (delta-kicked accelerator) yields quantum phenomena, quantum accelerator modes, which are markedly different from those in the case for which gravity is absent (delta-kicked rotor). Quantum accelerator modes result in a much higher rate of increase in the mean energy of the system than is found in its classical analog. When gravity is counteracted, the system exhibits the suppression of the momentum diffusion characteristic of dynamical localization. The effect of noise is examined and a comparison is made with simulations of both quantum-mechanical and classical versions of the system. We find that the introduction of noise results in the restoration of several signatures of classical behavior, although significant quantum features remain.

5.
Phys Rev Lett ; 87(7): 074102, 2001 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-11497893

RESUMO

We present detailed observations of the quantum delta-kicked rotor in the vicinity of a quantum resonance. Our experiment consists of an ensemble of cold cesium atoms subject to a pulsed off-resonant standing wave of light. We measure the mean energy and show clearly that at the quantum resonance it is a local maximum. We also examine the effect of noise on the system and find that the greatest sensitivity to this occurs at the resonances. This makes these regions ideal for examining quantum-classical correspondence. A picture based on diffraction is developed which allows the experiments to be readily understood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...