Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gigascience ; 2(1): 10, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23870653

RESUMO

BACKGROUND: The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly. RESULTS: In Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies. CONCLUSIONS: Many current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.

2.
Big Data ; 1(4): 227-36, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27447255

RESUMO

As analysts are expected to process a greater amount of information in a shorter amount of time, creators of big data software are challenged with the need for improved efficiency. Ray, our group's usable, scalable genome assembler, addresses big data problems by using optimal resources and producing one, correct and conservative, timely solution. Only by abstracting the size of the data from both the computers and the humans can the real scientific question, often complex in itself, eventually be solved. To draw a curtain over the specific computational machinery of big data, we developed RayPlatform, a programming framework that allows users to concentrate on their domain-specific problems. RayPlatform is a parallel message-passing software framework that runs on clouds, supercomputers, and desktops alike. Using established technologies such as C++ and MPI (message-passing interface), we handle the genomes of hundreds of species, from viruses to plants, using machines ranging from desktop computers to supercomputers. From this experience, we present insights on making computer time more useful-and user time much more valuable.

3.
Genome Biol ; 13(12): R122, 2012 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-23259615

RESUMO

Voluminous parallel sequencing datasets, especially metagenomic experiments, require distributed computing for de novo assembly and taxonomic profiling. Ray Meta is a massively distributed metagenome assembler that is coupled with Ray Communities, which profiles microbiomes based on uniquely-colored k-mers. It can accurately assemble and profile a three billion read metagenomic experiment representing 1,000 bacterial genomes of uneven proportions in 15 hours with 1,024 processor cores, using only 1.5 GB per core. The software will facilitate the processing of large and complex datasets, and will help in generating biological insights for specific environments. Ray Meta is open source and available at http://denovoassembler.sf.net.


Assuntos
Genoma Bacteriano , Metagenômica/métodos , Software , Bactérias/classificação , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...