Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5588, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961092

RESUMO

Dynamic failure in the laboratory is commonly preceded by many foreshocks which accompany premonitory aseismic slip. Aseismic slip is also thought to govern earthquake nucleation in nature, yet, foreshocks are rare. Here, we examine how heterogeneity due to different roughness, damage and pore pressures affects premonitory slip and acoustic emission characteristics. High fluid pressures increase stiffness and reduce heterogeneity which promotes more rapid slip acceleration and shorter precursory periods, similar to the effect of low geometric heterogeneity on smooth faults. The associated acoustic emission activity in low-heterogeneity samples becomes increasingly dominated by earthquake-like double-couple focal mechanisms. The similarity of fluid pressure increase and roughness reduction suggests that increased stress and geometric homogeneity may substantially shorten the duration of foreshock activity. Gradual fault activation and extended foreshock activity is more likely observable on immature faults at shallow depth.

2.
Science ; 361(6405): 899-904, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30166486

RESUMO

Fluid injection can cause extensive earthquake activity, sometimes at unexpectedly large distances. Appropriately mitigating associated seismic hazards requires a better understanding of the zone of influence of injection. We analyze spatial seismicity decay in a global dataset of 18 induced cases with clear association between isolated wells and earthquakes. We distinguish two populations. The first is characterized by near-well seismicity density plateaus and abrupt decay, dominated by square-root space-time migration and pressure diffusion. Injection at these sites occurs within the crystalline basement. The second population exhibits larger spatial footprints and magnitudes, as well as a power law-like, steady spatial decay over more than 10 kilometers, potentially caused by poroelastic effects. Far-reaching spatial effects during injection may increase event magnitudes and seismic hazard beyond expectations based on purely pressure-driven seismicity.

3.
Sci Adv ; 3(8): e1700441, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28808681

RESUMO

The state of Oklahoma has experienced an unprecedented increase in earthquake activity since 2009, likely driven by large-scale wastewater injection operations. Statewide injection rates peaked in early 2015 and steadily decreased thereafter, approximately coinciding with collapsing oil prices and regulatory action. If seismic activity is primarily driven by fluid injection, a noticeable seismogenic response to the decrease in injection rates is expected. Langenbruch and Zoback suggest that "the probability of potentially damaging larger events, should significantly decrease by the end of 2016 and approach historic levels within a few years." We agree that the rate of small earthquakes has decreased toward the second half of 2016. However, their specific predictions about seismic hazard require reexamination. We test the influence of the model parameters of Langenbruch and Zoback based on fits to observed seismicity distributions. The results suggest that a range of realistic aftershock decay rates and b values can lead to an increase in moderate earthquake probabilities from 37 to 80% in 2017 without any further alteration to the model. In addition, the observation that all four M ≥ 5 earthquakes to date occurred when injection rates were below the triggering threshold of Langenbruch and Zoback challenges the applicability of the model for the most societally significant events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...