Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Indian J Pathol Microbiol ; 67(2): 332-335, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394423

RESUMO

INTRODUCTION: Clinical laboratories serve a critical role in increasing the efficiency of patient care. Choosing the right test, getting trustworthy results and appropriate interpretation are of utmost importance in improving the patient's well-being. Quality management strategies should be applied in routine patient care because laboratory errors have a major impact on the quality of patient care. In sigma metrics, errors identified are quantified as percentage errors or defects per million (DPM). It aims at improving the quality control (QC) process by forming an appropriate strategy. AIM AND OBJECTIVES: To analyze the internal quality control (IQC) of hematology analytes using the sigma metrics method and to devise the frequency of IQC by the results of six sigma metric analysis. MATERIALS AND METHODS: This study was conducted in a tertiary care center of western India. Internal quality control (IQC) data sets of five analytes- Red Blood Cell count (RBC), Hemoglobin (Hb), Hematocrit (Hct), White blood cell count (WBC), and Platelet count (PLT) were analyzed retrospectively of six months using Beckman Coulter DXH 800 hematology analyzers. RESULTS: The observed sigma value was >6 for Hb, TLC, and PLT, indicating excellent results and requiring no modification in IQC. The Sigma value was between 3 and 4 for RBC and Hct suggested the need for improvement in quality control (QC) processes. No analytes showed a Sigma value of <3. CONCLUSION: Sigma metrics provide a quantitative framework that helps to assess analytic methodologies and can serve as an important self-assessment tool for quality assurance in the clinical laboratory.


Assuntos
Hematologia , Controle de Qualidade , Gestão da Qualidade Total , Humanos , Hematologia/normas , Índia , Estudos Retrospectivos , Centros de Atenção Terciária , Testes Hematológicos/normas , Laboratórios Clínicos/normas , Hemoglobinas/análise
2.
Adv Drug Deliv Rev ; 198: 114865, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37182699

RESUMO

The innate immune system plays a key role as the first line of defense in various human diseases including cancer, cardiovascular and inflammatory diseases. In contrast to tissue biopsies and blood biopsies, in vivo imaging of the innate immune system can provide whole body measurements of immune cell location and function and changes in response to disease progression and therapy. Rationally developed molecular imaging strategies can be used in evaluating the status and spatio-temporal distributions of the innate immune cells in near real-time, mapping the biodistribution of novel innate immunotherapies, monitoring their efficacy and potential toxicities, and eventually for stratifying patients that are likely to benefit from these immunotherapies. In this review, we will highlight the current state-of-the-art in noninvasive imaging techniques for preclinical imaging of the innate immune system particularly focusing on cell trafficking, biodistribution, as well as pharmacokinetics and dynamics of promising immunotherapies in cancer and other diseases; discuss the unmet needs and current challenges in integrating imaging modalities and immunology and suggest potential solutions to overcome these barriers.


Assuntos
Imunidade Inata , Neoplasias , Humanos , Distribuição Tecidual , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Imunoterapia/métodos , Imagem Molecular
3.
Adv Drug Deliv Rev ; 192: 114638, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462644

RESUMO

The exemplary progress of silica nanotechnology has attracted extensive attention across a range of biomedical applications such as diagnostics and imaging, drug delivery, and therapy of cancer and other diseases. Ultrasmall silica nanoparticles (USNs) have emerged as a particularly promising class demonstrating unique properties that are especially suitable for and have shown great promise in translational and clinical biomedical research. In this review, we discuss synthetic strategies that allow precise engineering of USNs with excellent control over size and surface chemistry, functionalization, and pharmacokinetic and toxicological profiles. We summarize the current state-of-the-art in the biomedical applications of USNs with a particular focus on select clinical studies. Finally, we illustrate long-standing challenges in the translation of inorganic nanotechnology, particularly in the context of ultrasmall nanomedicines, and provide our perspectives on potential solutions and future opportunities in accelerating the translation and widespread adoption of USN technology in biomedical research.


Assuntos
Pesquisa Biomédica , Nanopartículas , Humanos , Dióxido de Silício , Nanopartículas/química , Nanotecnologia/métodos , Nanomedicina
5.
J Cytol ; 39(4): 163-168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605873

RESUMO

The incidence of lung cancer has been increasing in the recent years. Bronchial cytology using Papanicolaou society of cytopathology (PSC) system is an effective method for triaging patients. The present study attempts to evaluate the bronchial cytological diagnosis with histopathological correlation of lung lesions. Aims: i. To study the cytological features of lung lesions. ii. To assess the sensitivity, specificity, and diagnostic accuracy of bronchial cytology of lung lesions in comparison with histopathology. Settings and Design: Prospective study at the tertiary care hospital. Methods and Material: It included 63 cases of lung lesions, evaluated using the PSC system for reporting respiratory cytology. The cytological diagnosis was correlated with the final histopathological diagnosis. The study was conducted between January 2019 and June 2020. Statistical Analysis Used: SPSS 20.0 software. Results: The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of bronchial cytology was 60%, 89%, 90%, 58.62%, and 71.42%, respectively. Conclusions: Bronchial cytology including bronchial wash, bronchial brush, endobronchial ultrasound/transbronchial needle aspiration, and computerized tomography-guided fine needle aspiration cytology can be used to increase the sensitivity and specificity for definitive diagnosis and better management.

6.
Bio Protoc ; 11(10): e4030, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34150937

RESUMO

The design of effective nanoformulations that target metastatic breast cancers is challenging due to a lack of competent imaging and image analysis protocols that can capture the interactions between the injected nanoparticles and metastatic lesions. Here, we describe the integration of in vivo whole-body PET-CT with high temporal resolution, ex vivo whole-organ optical imaging and high spatial resolution confocal microscopy to deconstruct the trafficking of injectable nanoparticle generators encapsulated with polymeric doxorubicin (iNPG-pDox) in pulmonary metastases of triple-negative breast cancer. We describe the details of image acquisition and analysis in a step-wise manner along with the development of a mouse model for metastatic breast cancer. The methods described herein can be easily adapted to any nanoparticle or disease model, allowing a standardized pipeline for in vivo preclinical studies that focus on delineating nanoparticle kinetics and interactions within metastases.

7.
BMJ Case Rep ; 14(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975840

RESUMO

Lateral aberrant ectopic thyroid is very rare, comprising only 1%-3% of all the ectopic thyroid tissue. Clinically, these lesions are mistaken for lymph node swelling or metastatic tumour. Primary carcinoma in lateral aberrant ectopic thyroid with normal active native thyroid is very uncommon. We report a case of papillary carcinoma in lateral aberrant ectopic thyroid tissue, with a completely normal native thyroid gland in a 53-year-old man, who presented with a massive swelling in the lateral aspect of the neck clinically and radiologically diagnosed as a malignant soft tissue tumour with differential diagnosis of malignant lymphoma. Fine needle aspiration cytology revealed metastatic papillary carcinoma. In toto excision of the soft tissue mass along with subtotal thyroidectomy was performed. Histology of the mass revealed papillary carcinoma of lateral aberrant ectopic thyroid, while the thyroid gland did not show evidence of malignancy. The postsurgical period was uneventful, and the patient underwent radioiodine ablation.


Assuntos
Carcinoma Papilar , Disgenesia da Tireoide , Neoplasias da Glândula Tireoide , Carcinoma Papilar/diagnóstico por imagem , Carcinoma Papilar/cirurgia , Humanos , Radioisótopos do Iodo , Masculino , Pessoa de Meia-Idade , Disgenesia da Tireoide/diagnóstico por imagem , Disgenesia da Tireoide/cirurgia , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/cirurgia , Tireoidectomia
8.
Nano Lett ; 21(11): 4692-4699, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34029471

RESUMO

Theranostic nanoparticles hold the potential to greatly improve cancer management by providing personalized medicine. Although many theranostic nanoconstructs have been successful in preclinical studies, clinical translation is still hampered by their limited targeting capability and lack of successful therapeutic efficacy. We report the use of novel ultrasmall porous silica nanoparticles (UPSN) with enhanced in vivo pharmacokinetics such as high target tissue accumulation (12% ID/g in the tumor) and evasion from the reticuloendothelial system (RES) organs. Herein, UPSN is conjugated with the isotopic pair 90/86Y, enabling both noninvasive imaging as well as internal radiotherapy. In vivo PET imaging demonstrates prolonged blood circulation and excellent tumor contrast with 86Y-DOTA-UPSN. Tumor-to-muscle and tumor-to-liver uptake values were significantly high (12.4 ± 1.7 and 1.5 ± 0.5, respectively), unprecedented for inorganic nanomaterials. 90Y-DOTA-UPSN significantly inhibits tumor growth and increases overall survival, indicating the promise of UPSN for future clinical translation as a cancer theranostic agent.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Porosidade , Medicina de Precisão , Dióxido de Silício
10.
Pharmaceutics ; 13(4)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920216

RESUMO

We sought to determine if Stephen Paget's "seed and soil" hypothesis of organ-preference patterns of cancer metastasis can explain the development of heterogeneity in a tumor microenvironment (TME) as well as immunotherapeutic delivery and efficacy. We established single-cell-derived clones (clones 1 and 16) from parental 4T1 murine breast cancer cells to create orthotopic primary and liver metastasis models to deconvolute polyclonal complexity cancer cells and the difference in TME-derived heterogeneities. Tumor-bearing mice were treated with anti-PD-L1 IgG or a control antibody, and immunofluorescent imaging and quantification were then performed to evaluate the therapeutic efficacy on tumor growth, the delivery of therapy to tumors, the development of blood vessels, the expression of PD-L1, the accumulation of immune cells, and the amount of coagulation inside tumors. The quantification showed an inverse correlation between the amount of delivered therapy and therapeutic efficacy in parental-cell-derived tumors. In contrast, tumors originating from clone 16 cells accumulated a significantly greater amount of therapy and responded better than clone-1-derived tumors. This difference was greater when tumors grew in the liver than the primary site. A similar trend was found in PD-L1 expression and immune cell accumulation. However, the change in the number of blood vessels was not significant. In addition, the amount of coagulation was more abundant in clone-1-derived tumors when compared to others. Thus, our findings reconfirmed the seed- and soil-dependent differences in PD-L1 expression, therapeutic delivery, immune cell accumulation, and tumor coagulation, which can constitute a heterogeneous delivery and response of immunotherapy in polyclonal tumors growing in different organs.

11.
Front Chem ; 8: 598100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240859

RESUMO

Nanotechnology has made a significant impact on basic and clinical cancer research over the past two decades. Owing to multidisciplinary advances, cancer nanotechnology aims to address the problems in current cancer treatment paradigms, with the ultimate goal to improve treatment efficacy, increase patient survival, and decrease toxic side-effects. The potential for use of nanomedicine in cancer targeting and therapy has grown, and is now used to advance the four traditional pillars of cancer treatment: surgery, chemotherapy, radiation therapy and the newest pillar, immunotherapy. In this review we provide an overview of notable advances of nanomedicine in improving drug delivery, radiation therapy and immunotherapy. Potential barriers in the translation of nanomedicine from bench to bedside as well as strategies to overcome these barriers are also discussed. Promising preclinical findings highlight the translational and clinical potential of integrating nanotechnology approaches into cancer care.

13.
Sci Adv ; 6(26): eaba4498, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32637609

RESUMO

It is challenging to design effective drug delivery systems (DDS) that target metastatic breast cancers (MBC) because of lack of competent imaging and image analysis protocols that suitably capture the interactions between DDS and metastatic lesions. Here, we integrate high temporal resolution of in vivo whole-body PET-CT, ex vivo whole-organ optical imaging, high spatial resolution of confocal microscopy, and mathematical modeling, to systematically deconstruct the trafficking of injectable nanoparticle generators encapsulated with polymeric doxorubicin (iNPG-pDox) in pulmonary MBC. iNPG-pDox accumulated substantially in metastatic lungs, compared to healthy lungs. Intratumoral distribution and retention of iNPG-pDox varied with lesion size, possibly induced by locally remodeled microenvironment. We further used multiscale imaging and mathematical simulations to provide improved drug delivery strategies for MBC. Our work presents a multidisciplinary translational toolbox to evaluate transport and interactions of DDS within metastases. This knowledge can be recursively applied to rationally design advanced therapies for metastatic cancers.


Assuntos
Neoplasias da Mama , Nanopartículas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Microambiente Tumoral
15.
Artigo em Inglês | MEDLINE | ID: mdl-32314552

RESUMO

While plasma concentration kinetics has traditionally been the predictor of drug pharmacological effects, it can occasionally fail to represent kinetics at the site of action, particularly for solid tumors. This is especially true in the case of delivery of therapeutic macromolecules (drug-loaded nanomaterials or monoclonal antibodies), which can experience challenges to effective delivery due to particle size-dependent diffusion barriers at the target site. As a result, disparity between therapeutic plasma kinetics and kinetics at the site of action may exist, highlighting the importance of target site concentration kinetics in determining the pharmacodynamic effects of macromolecular therapeutic agents. Assessment of concentration kinetics at the target site has been facilitated by non-invasive in vivo imaging modalities. This allows for visualization and quantification of the whole-body disposition behavior of therapeutics that is essential for a comprehensive understanding of their pharmacokinetics and pharmacodynamics. Quantitative non-invasive imaging can also help guide the development and parameterization of mathematical models for descriptive and predictive purposes. Here, we present a review of the application of state-of-the-art imaging modalities for quantitative pharmacological evaluation of therapeutic nanoparticles and monoclonal antibodies, with a focus on their integration with mathematical models, and identify challenges and opportunities. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Assuntos
Anticorpos Monoclonais , Processamento de Imagem Assistida por Computador , Nanoestruturas , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Linhagem Celular Tumoral , Humanos , Camundongos , Modelos Teóricos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Sci Adv ; 6(14): eaba0145, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32270048

RESUMO

Low oral bioavailability of peptide drugs has limited their application to parenteral administration, which suffers from poor patient compliance. Here, we show that molecular targeting of the FATP4 transporter is an effective approach to specifically transport long-chain fatty acid (LCFA)-conjugated peptides across the enterocytic membrane and, thus, enables oral delivery of drug peptides. We packaged LCFA-conjugated exendin-4 (LCFA-Ex4) into liposomes and coated with chitosan nanoparticles to form an orally deliverable Ex4 (OraEx4). OraEx4 protected LCFA-Ex4 from damage by the gastric fluid and released LCFA-Ex4 in the intestinal cavity, where LCFA-Ex4 was transported across the enterocyte membrane by the FAPT4 transporter. OraEx4 had a high bioavailability of 24.8% with respect to subcutaneous injection and exhibited a substantial hypoglycemic effect in murine models of diabetes mellitus. Thus, molecular targeting of the FATP4 transporter enhances oral absorption of therapeutic peptides and provides a platform for oral peptide drug development.

17.
Nano Res ; 13: 3217-3223, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34295454

RESUMO

Photodynamic therapy (PDT) by near-infrared (NIR) irradiation is a promising technique for treating various cancers. Here, we reported the development of free-standing wafer-scale Au nanosheets (NSs) that exhibited an impressive PDT effect. The Au NSs were synthesized by ionic layer epitaxy at the air-water interface with a uniform thickness in the range from 2 to 8.5 nm. These Au NSs were found very effective in generating singlet oxygen under NIR irradiation. In vitro cellular study showed that the Au NSs had very low cytotoxicity and high PDT efficiency due to their uniform 2D morphology. Au NSs could kill cancer cells after 5 min NIR irradiation with little heat generation. This performance is comparable to using 10 times mass loading of Au nanoparticles (NPs). This work suggests that two-dimensional (2D) Au NSs could be a new type of biocompatible nanomaterial for PDT of cancer with an extraordinary photon conversion and cancer cell killing efficiency.

18.
ACS Appl Bio Mater ; 2(1): 544-554, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31853516

RESUMO

Porphyrin-based nanomaterials can inherently integrate multiple contrast imaging functionalities with phototherapeutic capabilities. We dispersed pheophytin (Pheo) into Pluronic F127 and carried out low-temperature surfactant-stripping to remove the bulk surfactant. Surfactant-stripped Pheo (ss-Pheo) micelles exhibited a similar size, but higher near-infrared fluorescence, compared to two other nanomaterials also with high porphyrin density (surfactant-stripped chlorophyll micelles and porphysomes). Singlet oxygen generation, which was higher for ss-Pheo, enabled photodynamic therapy (PDT). ss-Pheo provided contrast for photoacoustic and fluorescence imaging, and following seamless labeling with 64Cu, was used for positron emission tomography. ss-Pheo had a long blood circulation and favorable accumulation in an orthotopic murine mammary tumor model. Trimodal tumor imaging was demonstrated, and PDT resulted in delayed tumor growth.

19.
Small ; 15(46): e1903747, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31565854

RESUMO

Rapid sequestration and prolonged retention of intravenously injected nanoparticles by the liver and spleen (reticuloendothelial system (RES)) presents a major barrier to effective delivery to the target site and hampers clinical translation of nanomedicine. Inspired by biological macromolecular drugs, synthesis of ultrasmall (diameter ≈12-15 nm) porous silica nanoparticles (UPSNs), capable of prolonged plasma half-life, attenuated RES sequestration, and accelerated hepatobiliary clearance, is reported. The study further investigates the effect of tumor vascularization on uptake and retention of UPSNs in two mouse models of triple negative breast cancer with distinctly different microenvironments. A semimechanistic mathematical model is developed to gain mechanistic insights into the interactions between the UPSNs and the biological entities of interest, specifically the RES. Despite similar systemic pharmacokinetic profiles, UPSNs demonstrate strikingly different tumor responses in the two models. Histopathology confirms the differences in vasculature and stromal status of the two models, and corresponding differences in the microscopic distribution of UPSNs within the tumors. The studies demonstrate the successful application of multidisciplinary and complementary approaches, based on laboratory experimentation and mathematical modeling, to concurrently design optimized nanomaterials, and investigate their complex biological interactions, in order to drive innovation and translation.


Assuntos
Nanopartículas/química , Neovascularização Patológica/patologia , Tamanho da Partícula , Dióxido de Silício/química , Neoplasias de Mama Triplo Negativas/irrigação sanguínea , Animais , Linhagem Celular Tumoral , Radioisótopos de Cobre/farmacocinética , Feminino , Humanos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Nanopartículas/ultraestrutura , Porosidade , Distribuição Tecidual , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
20.
Biomed Microdevices ; 21(2): 40, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30949850

RESUMO

Cancer continues to be among the leading healthcare problems worldwide, and efforts continue not just to find better drugs, but also better drug delivery methods. The need for delivering cytotoxic agents selectively to cancerous cells, for improved safety and efficacy, has triggered the application of nanotechnology in medicine. This effort has provided drug delivery systems that can potentially revolutionize cancer treatment. Nanocarriers, due to their capacity for targeted drug delivery, can shift the balance of cytotoxicity from healthy to cancerous cells. The field of cancer nanomedicine has made significant progress, but challenges remain that impede its clinical translation. Several biophysical barriers to the transport of nanocarriers to the tumor exist, and a much deeper understanding of nano-bio interactions is necessary to change the status quo. Mathematical modeling has been instrumental in improving our understanding of the physicochemical and physiological underpinnings of nanomaterial behavior in biological systems. Here, we present a comprehensive review of literature on mathematical modeling works that have been and are being employed towards a better understanding of nano-bio interactions for improved tumor delivery efficacy.


Assuntos
Modelos Biológicos , Nanomedicina , Neoplasias , Animais , Transporte Biológico , Humanos , Nanopartículas/química , Neoplasias/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...