Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Stimul ; 7(4): 603-607, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24933029

RESUMO

BACKGROUND: Functional magnetic resonance imaging (fMRI) is a powerful method for identifying in vivo network activation evoked by deep brain stimulation (DBS). OBJECTIVE: Identify the global neural circuitry effect of subthalamic nucleus (STN) DBS in nonhuman primates (NHP). METHOD: An in-house developed MR image-guided stereotactic targeting system delivered a mini-DBS stimulating electrode, and blood oxygenation level-dependent (BOLD) activation during STN DBS in healthy NHP was measured by combining fMRI with a normalized functional activation map and general linear modeling. RESULTS: STN DBS significantly increased BOLD activation in the sensorimotor cortex, supplementary motor area, caudate nucleus, pedunculopontine nucleus, cingulate, insular cortex, and cerebellum (FDR < 0.001). CONCLUSION: Our results demonstrate that STN DBS evokes neural network grouping within the motor network and the basal ganglia. Taken together, these data highlight the importance and specificity of neural circuitry activation patterns and functional connectivity.


Assuntos
Estimulação Encefálica Profunda , Imageamento por Ressonância Magnética/métodos , Córtex Motor/fisiologia , Vias Neurais , Oxigênio/sangue , Técnicas Estereotáxicas , Núcleo Subtalâmico/fisiologia , Animais , Gânglios da Base/fisiologia , Núcleo Caudado/fisiologia , Cerebelo/fisiologia , Giro do Cíngulo/fisiologia , Macaca mulatta , Masculino , Núcleo Tegmental Pedunculopontino/fisiologia , Córtex Sensório-Motor/fisiologia
2.
Brain ; 131(Pt 4): 928-37, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18263625

RESUMO

Neuronal oscillations span a wide range of spatial and temporal scales that extend beyond traditional clinical EEG. Recent research suggests that high-frequency oscillations (HFO), in the ripple (80-250 Hz) and fast ripple (250-1000 Hz) frequency range, may be signatures of epileptogenic brain and involved in the generation of seizures. However, most research investigating HFO in humans comes from microwire recordings, whose relationship to standard clinical intracranial EEG (iEEG) has not been explored. In this study iEEG recordings (DC - 9000 Hz) were obtained from human medial temporal lobe using custom depth electrodes containing both microwires and clinical macroelectrodes. Ripple and fast-ripple HFO recorded from both microwires and clinical macroelectrodes were increased in seizure generating brain regions compared to control regions. The distribution of HFO frequencies recorded from the macroelectrodes was concentrated in the ripple frequency range, compared to a broad distribution of HFO frequencies recorded from microwires. The average frequency of ripple HFO recorded from macroelectrodes was lower than that recorded from microwires (143.3 +/- 49.3 Hz versus 116.3 +/- 38.4, Wilcoxon rank sum P<0.0001). Fast-ripple HFO were most often recorded on a single microwire, supporting the hypothesis that fast-ripple HFO are primarily generated by highly localized, sub-millimeter scale neuronal assemblies that are most effectively sampled by microwire electrodes. Future research will address the clinical utility of these recordings for localizing epileptogenic networks and understanding seizure generation.


Assuntos
Relógios Biológicos , Epilepsia do Lobo Temporal/fisiopatologia , Lobo Temporal/fisiopatologia , Mapeamento Encefálico/métodos , Eletrodos Implantados , Eletroencefalografia/instrumentação , Eletroencefalografia/métodos , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/cirurgia , Humanos , Imageamento por Ressonância Magnética , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...